

A Gentle Introduction to SQL Using SQLite

This tutorial was crafted by Troy Thibodeaux [https://github.com/tthibo]
as a human-friendly introduction to the world of databases and SQL.
It introduces database skills from the ground up using
SQLite and a small set of data from the world of campaign finance.

This tutorial largely hews to Troy’s original SQL-Tutorial [https://github.com/tthibo/SQL-Tutorial],
but updates the material to work with DB Browser for SQLite.
Source code for this tutorial lives on Github [https://github.com/zstumgoren/gentle-intro-to-sql].

	Part I
	Hello SQL!

	Installing DB Browser for SQLite

	Creating the First Database

	Creating a Table

	Inserting Data

	Querying Data

	Using DISTINCT to get a distinct set

	The WHERE Clause

	Combining conditions with AND and OR

	Sorting results with ORDER BY

	Changing values with UPDATE

	Deleting data

	Further References

	Part II
	Getting started

	Nothing can come of nothing: Using IS NULL

	Knowing your limitations: Using LIMIT

	Casting a wider net with LIKE

	Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER()

	Pull yourself together: The concatenate operator (||)

	Pick One: Using BETWEEN and IN (NOT IN)

	Aggregate Functions: COUNT, MAX, MIN, SUM, AVG

	Beyond functions: Custom calculations

	Subqueries, the Russian dolls of SQL

	GROUP BY

	HAVING

	Revisiting subqueries

	Conclusion

	Part III
	Spreading the data around: Data Normalization

	Referentially speaking: Associating tables using foreign keys

	Reaching across the aisle using JOIN

	Explicit JOIN syntax

	OUTER JOIN

	Why be normal? Denormalization as an informed choice.

	Conclusion

	Further Resources

	Appendix
	Importing data from a file

	Saving scripts

Indices and tables

	Index

	Module Index

	Search Page

[image: _images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Part I

	Hello SQL!

	Installing DB Browser for SQLite

	Creating the First Database

	Creating a Table

	Inserting Data

	Querying Data

	Using DISTINCT to get a distinct set

	The WHERE Clause

	Combining conditions with AND and OR

	Sorting results with ORDER BY

	Changing values with UPDATE

	Deleting data

	Further References

[image: _images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Hello SQL!

SQL or Structured Query language is the language used to communicate
with relational databases. What are relational databases? Well, most of
the popular database systems you may know, such as MS Access, MySQL or
SQLite, are all relational. That is, they all use a relational model,
which, it turns out, can be described much like a spreadsheet:

	Data are organized into tables (relations) that represent a
collection of similar objects (e.g. contributors).

	The columns of the table represent the attributes that members of the
collection share (last name, home address, amount of contribution).

	Each row in the table represents an individual member of the
collection (one contributor).

	And the values in the row represent the attributes of that individual
(Smith, 1228 Laurel St., $250).

Much of the power of a relational database lies in the ability to query
these relations, both within a table (give me all contributors who
donated at least $500 and who live in Wyoming) and among tables (from
the contributors, judges and litigants tables, give me all contributors
who donated at least $1000 to Judge Crawford and who also had legal
cases over which Judge Crawford presided). SQL is the powerful and
rather minimalist language we use to ask such questions of our data in a
relational database. How minimalist is SQL? The basic vocabulary for
querying data comes down to a few main verbs:

SELECT
INSERT
UPDATE
DELETE

I imagine you can guess what each of those verbs does, even if you’ve
never written a database query.

To create and change the structure of tables in the database, there
are a few other verbs to use:

CREATE
DROP
ALTER

Those are the keywords that perform almost everything you need to do.
The language also includes a number of modifiers that help specify the
action of the verbs, but the core list comes down to a couple dozen
words. These basic keywords are common across pretty much all
relational databases. A specific database management system (Access,
MySQL or SQLite) may add its own extensions to the common keywords,
but the lion’s share of the work is done with this handful of words,
and they’re basically the same across database applications.

By combining these simple keywords, you can create remarkably complex
and specific queries. And the basic syntax still reads fairly clearly:

SELECT last_name FROM contributors WHERE state = 'WY';

The SQL query above reads pretty much like the English sentence for
the same request:

Select the last name from the contributors table where the contributor's state is WY.

If you’re using a graphical interface such as a datagrid, that
interface is simply constructing queries like these behind the scenes.
So, why not take command of your queries and write them yourself?

A couple of things off the bat:

	SQL keywords are not case-sensitive. So capitalizing SELECT in the
statement above is optional. Using all caps for keywords is
considered good form, though, because it helps distinguish keywords
from table names or other non-keywords.

	The statement ends with a semi-colon. This is the standard way of
ending a statement in SQL. Some systems enforce this convention.

So, let’s dive in. For this tutorial, we will be using SQLite, a free
and open source database manager that’s lightweight and portable.

Installing DB Browser for SQLite

To create our own databases, we’ll use the free and open source DB
Browser for SQLite [https://sqlitebrowser.org/]. Per their
documentation:

DB Browser for SQLite is a high quality, visual, open source tool to
create, design, and edit database files compatible with SQLite. It is
for users and developers wanting to create databases, search, and
edit data. It uses a familiar spreadsheet-like interface, and you
don’t need to learn complicated SQL commands.

Go to this page [https://sqlitebrowser.org/dl/], download the installer
appropriate for your machine, and execute the installer.

Once finished, search for the program and fire it up.

On a Mac, you can hit Command + Space bar and type your search to
find the program, or search in Launchpad.

[image: start_window]

Creating the First Database

Mousing over each of the icons at the top of the DB Browser tool will
show what the icon does.

To create a database, simply click on the icon for “New Database”:

[image: image1]

Name the database “contributors” and save it anywhere you like (the desktop will
work, or your documents folder). This single file will contain the
entire database you create.

Note: As you do work in DB Browser, be aware that it will not
automatically save your work. If you plan to step away from the tutorial,
be sure to save your changes by clicking the “Write Changes” button:

[image: write_changes_button]

You can also save SQL queries as individual scripts.

Creating a Table

Click the “Create Table” icon ([image: image2]), and you’ll get a form
allowing you to create a new table.

To create a table, we have to define the attributes or columns that
make it up. For each column, we define the datatype of the data it
will contain.

Name the table “contributors” and begin creating columns as below by
clicking the “Add field” button.

Note: You should name and order the fields AND fill in the drop-down
menu and checkboxes exactly as displayed!

[image: image3]

Important notes

Some important things to note:

	As you start adding fields and options, note how the table creation
SQL in the bottom pane dynamically updates.

	The id field will be a unique identifier for each contributor
(and therefore will be the “Primary Key” for the row), which is why
we checked the PK box for this one field. Checking the AI box
will make this integer automatically increment for each row we add
(so each new row will have a new id). Finally, this field should not
be null or empty (because we need it as the unique identifier), so we
check the Not box as well.

	The next five columns will all contain text strings of undetermined
lengths (last names, for example, come in all kinds of lengths), so
we’ll use the TEXT datatype, which allows for text of varying
length.

By the way, it may seem strange that the zip column uses a TEXT
datatype, but remember that some zips start with a 0 (00501 is in NY).
So, we want to treat this column as a string of text, rather than as a
number (which would be 501).

Click OK and DB Browser will create the table based on your
specifications, by executing the full SQL statement in the lower pane of
the table creation window:

CREATE TABLE `contributors` (
 `id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 `last_name` TEXT,
 `first_name` TEXT,
 `city` TEXT,
 `state` TEXT,
 `zip` TEXT,
 `amount` INTEGER
);

The syntax should be fairly clear, since it just reflects the choices we
made in the form. It’s creating a table called “contributors” with the
fields and data types we’ve defined.

You should now have a “contributors” table in the list in the Database
Structure panel of the manager. Clicking the arrow beside the listing
for “contributors” will show you the column list for the table.

[image: image4]

Inserting Data

Now that we have a table in the database, we can start inserting data.
This task is accomplished with (oddly enough) an INSERT statement.

Click the “Execute SQL” tab in the second menu row, under the
icons for creating/opening databases:

[image: image1]

The top pane with the flashing cursor is where you can write SQL
queries. Since we don’t have data in the table yet, let’s go ahead and
insert some by copying and pasting the below SQL into the pane with the
flashing cursor.

INSERT INTO contributors (last_name, first_name, city, state, zip, amount)
VALUES ('Buffet', 'Warren', 'Omaha', 'Nebraska', '68101', 1500);

This is a little more obscure than the CREATE or SELECT syntax,
but it’s still fairly clear. To insert a row in the table, we execute
the INSERT INTO statement with a table name, a list of columns to
populate, and the VALUES for each of those columns. The order of
the columns in the column list must match the order of values in the
values list.

It’s very important to surround text values with single quotation marks.
Two things to note:

	The quotation marks indicate to SQL that this is a literal string
(the word ‘Buffet’), rather than a column name or other special
usage.

	SQL uses single quotation marks around text strings. Some database
systems will also accept double quotes, but some will throw an error.

	The commas between values are placed outside of the quote marks, not
inside.

Notice that we didn’t insert a value for id. Because we set that column
to AUTOINCREMENT, SQLite will populate the id with the next integer in
the sequence. So, we don’t need to worry about choosing unique ids;
SQLite takes care of it.

Finally, we didn’t include dollar signs or commas in the “amount”
column. We created the “amount” column as an integer, so we should only
insert integers there. (Different database management systems will react
differently if you try to insert non-numeric characters in an integer
column; it’s best to avoid doing so.)

If you haven’t done so already, click the Execute SQL button [image: image2].

The bottom pane should say “Query executed successfully” followed by a
copy of the SQL that was executed. Success! You’ve added data!

You can view the data by going to the “Browse Data” tab:

[image: image3]

Just so we’ll have some data to play with, let’s execute a few more
INSERT statements. Go back to the “Execute SQL” tab and paste in
these lines:

INSERT INTO contributors (last_name, first_name, city, state, zip, amount) VALUES ('Winfrey', 'Oprah', 'Chicago', 'IL', '60601', 500);
INSERT INTO contributors (last_name, first_name, city, state, zip, amount) VALUES ('Chambers', 'Anne Cox', 'Atlanta', 'GA', '30301', 200);
INSERT INTO contributors (last_name, first_name, city, state, zip, amount) VALUES ('Cathy', 'S. Truett', 'Atlanta', 'GA', '30301', 1200);

You can paste all three lines into the SQL text box at the same time.
The semi-colons indicate the end of each statement.

Before inserting these new records, you should delete the original
INSERT statement to avoid re-running it, which would result in a
duplicate record.

Click the “Execute SQL” button.

You can view the new records in the “Browse Data” tab. You should see
4 rows in total now.

Querying Data

Now that we have a small data set to use, let’s start querying it
by using the SELECT statement.

Navigate to the “Execute SQL” panel and type the following into the SQL text box:

SELECT * FROM contributors;

Now click the “Execute SQL” button.

You should see a nice grid display of all contributors you’ve added. The
* character is a common wildcard. In this SELECT statement, it is used to
retrieve all columns. So, we have selected all columns from all rows in
the contributors table.

To define which columns of data you want to return, simply provide a
comma-separated list of column names to SELECT:

SELECT city, state FROM contributors;

Clicking “Execute SQL” should give you a two-column table of cities and
states.

[image: image1]

Using DISTINCT to get a distinct set

The SELECT query above gives us a list of cities and states, but it
includes duplicate rows for Atlanta, GA. Adding DISTINCT to the
query eliminates the duplicates:

SELECT DISTINCT city, state FROM contributors;

[image: image2]

Now you should have only three rows in your results, showing the unique
combinations for city and state in the table.

Notice what happens if you add the last_name field to the DISTINCT
query:

SELECT DISTINCT last_name, city, state FROM contributors;

[image: image3]

We’re back to four rows. There are four distinct combinations of
last_name, city and state in the table, so that’s what we get from
DISTINCT.

The WHERE Clause

The WHERE clause provides the scalpel for your SQL operations. A
well-crafted WHERE clause can let you take exactly the slice of the
data you want. It sets the conditions for the SELECT, and the query will
return only those rows that match the conditions.

Say, for example, we only wanted to see contributors from Georgia:

SELECT * FROM contributors WHERE state='GA';

Remember the single quotes around the string “GA”

[image: image4]

And you can test for more than equality in the WHERE clause. This query
finds only the contributors who have donated more than $1200:

SELECT * FROM contributors WHERE amount > 1200;

Of course, donors who have given exactly $1200 won’t be included in the
results. To include them, use the >= operator:

SELECT * FROM contributors WHERE amount >= 1200;

Here are some other operators you can use:

	operator

	description

	=

	Equal

	!=

	Not equal*

	>

	Greater than

	<

	Less than

	>=

	Greater than or equal

	<=

	Less than or equal

* Many database systems also use <> for “Not equal”

Combining conditions with AND and OR

You can combine conditions using AND and OR. For example, let’s
find all contributors from Georgia who have given more than $1000:

SELECT * FROM contributors WHERE state = 'GA' AND amount > 1000;

[image: image5]

Now let’s find all contributors who either live in Georgia or who have
given more than $1000:

SELECT * FROM contributors WHERE state = 'GA' OR amount > 1000;

[image: image6]

And now let’s try to get the big spenders from Chicago and Georgia:

SELECT * FROM contributors WHERE city = 'Chicago' OR state = 'GA' AND amount > 1000;

[image: image7]

Hmm … Oprah is in the list, but she only donated $500. What gives?

The problem here is that the AND operator has a higher precedence
than the OR operator, which means it gets evaluated first. So, in
effect, our query really looks like this:

SELECT * FROM contributors WHERE city = 'Chicago' OR (state = 'GA' AND amount > 1000);

Which selects all contributors from Chicago and only those contributors
from Georgia who have also donated more than $1000.

We can use parentheses to clarify the original query and actually get
the high rollers we wanted:

SELECT * FROM contributors WHERE (city = 'Chicago' OR state = 'GA') AND amount > 1000;

Parentheses are often helpful when you need to disambiguate a query.
Technically, you’re changing the order of evaluation here, but you’re
also just making the intention of your statement clear.

Sorting results with ORDER BY

To order your result set by the values in a particular column, use
ORDER BY:

SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount;

[image: image1]

Only the rows matching the WHERE clause are returned (i.e. only
those with an amount exceeding $200).

The default direction for ORDER BY is ascending; results are ordered
from smallest amount to greatest.

To specify the direction of the sorting, use the DESC or ASC
keyword:

SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount DESC;

[image: image2]

You can also order the results by more than one column. Rows with the
same value for the first column of the ORDER BY are further ordered
by the additional column(s):

SELECT last_name, state, amount FROM contributors ORDER BY state, amount DESC;

[image: image3]

Here we get the list of contributors ordered by state and then ordered
by the amount, from highest to lowest amount within the state, of their
contribution. This is one quick way to see who has contributed the most
in each state.

Changing values with UPDATE

Now we have some basic skills for creating tables, inserting data into
the table and querying the data we’ve inserted. But what about changing
the values in existing rows? To change the value of existing rows, we
use the UPDATE statement.

One thing that just looks wrong with our data set is that value
“Nebraska” in the state column:

SELECT state FROM contributors;

[image: image1]

That should be the postal abbreviation, like the other rows. To change
that value, we need to use UPDATE to set a new value for the column.
But we want to make sure we don’t blow away the state values in our
other columns.

If we just used UPDATE contributors SET state = 'NE'; - DON’T EXECUTE THIS!! - we
would end up replacing the state value in every row with “NE”. Not
exactly what we want.

So, we have to define a WHERE clause to determine which rows will be
changed by the UPDATE:

UPDATE contributors SET state = 'NE' WHERE state = 'Nebraska';

Ok, let’s see how the state list looks:

SELECT DISTINCT state FROM contributors;

[image: image2]

Now that’s more like it.

Deleting data

The remaining keyword from the original list is DELETE, which
unsurprisingly deletes rows from the table. As when using UPDATE, it’s
important to specify a WHERE clause with DELETE. Running DELETE without
a WHERE clause will blow away your precious data and can seriously ruin
your day.

Before executing a DELETE or UPDATE, it’s always a good idea to run a
SELECT with the same WHERE clause, just to see which rows your changes
will affect.

So, let’s get rid of one of our rows. How about deleting Warren Buffet?

For our WHERE clause, we could match on any column or combination of
columns, but if we know the PRIMARY KEY value of the row, that’s our
safest bet. Because it’s a unique identifier, we can be certain we’re
not accidentally deleting other rows. First let’s make sure we have the
row we want:

SELECT * FROM contributors WHERE id = 1;

[image: image1]

Looks like the one we want, so let’s delete it:

DELETE FROM contributors WHERE id = 1;

Notice that we don’t need to specify columns or use * with DELETE,
since we’re deleting the entire row.

Now the row should be gone:

SELECT * FROM contributors;

Finally, you should save the database changes you’ve made so you don’t
lose your work. You can save the changes by clicking the “Write Changes” button:

[image: write_changes]

Further References

http://www.w3schools.com/sql/sql_intro.asp

http://www.firstsql.com/tutor.htm

https://hackr.io/tutorials/learn-sql

Part II

Now that we have some dirty data and a few keywords, we can start to
write some more interesting queries. In the process, we’ll learn a few
of the idiosyncrasies of SQL.

	Getting started

	Nothing can come of nothing: Using IS NULL

	Knowing your limitations: Using LIMIT

	Casting a wider net with LIKE

	Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER()

	Pull yourself together: The concatenate operator (||)

	Pick One: Using BETWEEN and IN (NOT IN)

	Aggregate Functions: COUNT, MAX, MIN, SUM, AVG

	Beyond functions: Custom calculations

	Subqueries, the Russian dolls of SQL

	GROUP BY

	HAVING

	Revisiting subqueries

	Conclusion

[image: _images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Getting started

For this section, we’ll use a pre-packaged database containing 103 rows
of FEC data, with some light modifcations for the purposes of learning.

	Download contributors.db

	Fire up DB Browser if you don’t already have it open

	Click “Open Database”:
[image: open_db]

	Navigate to the “contributors.db” and open it

Now you’re ready to dive deeper into SQL’s features for querying
and manipulating data, starting with how to
handle null values.

Nothing can come of nothing: Using IS NULL

Let’s take a look back at our original CREATE statement for the
contributors table:

CREATE TABLE `contributors` (
 `id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 `last_name` TEXT,
 `first_name` TEXT,
 `city` TEXT,
 `state` TEXT,
 `zip` TEXT,
 `amount` INTEGER
);

Notice that we defined the id column as NOT NULL, which meant that it
was a required field. Because that field is serving as our unique
identifier or PRIMARY KEY for the row, it can’t be empty.

The keyword NULL is a special value in SQL. It’s a placeholder for an
empty field. If a field is NULL, it’s really empty. That means it’s not
0. It’s not an empty string (“”). If you’re of a philosophical mind, you
might call NULL the “nothing that is”. If you’re of a pragmatic mind,
you might just think of it as a placeholder where no value has been
entered.

But being nothing (or a placeholder for an empty value) comes with a
cost. NULL can’t be compared with other data types such as strings. And
we can’t use normal operators to match it, either. So =, != and friends
don’t work with NULL. Don’t believe me? Try it out:

SELECT * FROM contributors WHERE last_name = NULL;

Instead, to query for null values, we use the keywords IS NULL:

SELECT * FROM contributors WHERE last_name IS NULL;

[image: last_name_null]

NULL’s refusal to respond to normal operators can lead to some
unforeseen effects. Take a look at this query, and guess what it should
return:

SELECT * FROM contributors WHERE state = 'VA' AND last_name != 'Lewis';

(Remember that != means “is not equal.”)

There are three contributors from VA in the table:

	Robert Albrecht,

	Donald S. Lewis

	and someone from Rocky Mount whose name fields are empty.
(Yes, the data did come in like this from the FEC.)

You can see the list by using “Browse Data” and filtering the
state field for “VA”, or by running this query:

SELECT * FROM contributors WHERE state = 'VA';.

So, the clause WHERE state = 'VA' AND last_name != 'Lewis' looks like it’s
asking for all contributors from Virginia whose last name is not Lewis.
And it looks like it should return both Albrecht and the Rocky Mount
contributor. But when we run it (cue “Price Is Right” sad horn sound),
we only get Albrecht:

[image: not_lewis]

“Curiouser and curiouser,” you might say. This makes strict logical
sense when we consider that the NULL data type can’t be compared with
any other data type, but really it does seem a bit of a pain (even to
some of the SQL gurus). The solution is to use IS NULL. Here’s one way
to write the query to get the results we intended:

SELECT * FROM contributors WHERE state = 'VA' AND (last_name != 'Lewis' OR last_name IS NULL);

(The parentheses are optional here, but they do help express our intentions.)

And now we get the two expected result rows:

[image: lewis_or_null]

IS NOT NULL

The opposite of IS NULL is (drumroll) … IS NOT NULL. And it works
pretty much as we’d expect:

SELECT * FROM contributors WHERE state = 'VA' AND last_name IS NOT NULL;

[image: is_not_null]

This negative form is pretty handy for filtering null values from the
results set.

Knowing your limitations: Using LIMIT

So far, all of our queries have returned the full result set of rows
matching the WHERE clause. But sometimes you only want a subset of the
results. Let’s use the LIMIT keyword to get the top 15 contributors by
contribution.

First we order the results by amount (in descending order), and then we
limit the results to only the first 15 rows:

SELECT * FROM CONTRIBUTORS ORDER BY amount DESC LIMIT 15;

[image: top_15_contributors]

And if there aren’t enough matching rows to reach the specified limit,
the limit is simply ignored:

SELECT * FROM contributors WHERE amount > 2100 LIMIT 15;

Casting a wider net with LIKE

While it’s helpful to be able to write queries that look for equality
(last_name = ‘Smith’) or inequality (last_name != ‘Smith’), sometimes
you want to do something a little messier, such as looking for everyone
whose last name starts with ‘T’. Or maybe you want to look for matches
to a five-digit ZIP code, but some of your rows use ZIP+4. For these
kinds of expressions, you can use the LIKE operator, which will perform
a partial match.

A brief aside worth mentioning: The LIKE operator is case-insensitive for
English letters, so a query for “SMITH” or “smith” would both match the name “Smith.”

To perform a partial match using LIKE, you can combine normal characters
and special wildcard characters to construct a pattern. For example, the
percent sign (%) will match any sequence of zero or more characters. So
to match any zip that begins with 77566, we can use this statement:

SELECT zip FROM contributors WHERE zip LIKE '77566%';

[image: zip_LIKE]

Notice that it matches both 775661497 and 77566036. It would also match
77566, because the % will match zero characters, too.

The % is probably the most common special character used in pattern
matching with LIKE. Another less commonly used pattern matcher is the
underscore (“_”), which matches any single character in the string.

Say, for example, we wanted to start cleaning our data, and we wanted to
remove the middle initials from the first_name field and put them into a
new middle_name column. (This sort of thing can get tricky very quickly,
but for now we’ll trip along happily assuming everything goes smoothly.)

As a first step, we want simply to examine all of the rows that appear
to contain middle initials in first_name. Here’s a query that will get
us at least part of the way there:

SELECT * FROM contributors WHERE first_name LIKE '% _.';

Reading patterns like this one may prove a little tricky at first, but
in time … who am I kidding, it’s still pretty tricky, but you can
figure it out. Let’s break it down:

	The pattern starts with %, which we know means “match any series of
zero or more characters,” which is pretty much anything.

	Next we have a space. It’s hard to see, but it’s between the % and
the underscore (_). So we’re matching anything plus a space.

	Then we have the magic underscore (_), meaning any single character.

	And finally, we have a period (.), which is just a literal period
here.

And here’s the result (you should get 60 rows, but we’ve truncated the results
here):

[image: like_initial]

So, in English, the pattern says to match “any series of characters
followed by a space, a single character, and a period.”

This pattern will match things like:

	“John Q.”

	“1234 5.”

	“#$%^ !.”

	” B.”

	“J. B.”

It won’t, however, match the string “J. Quincy” because the period isn’t the last
character in the field. Neither will it match “Alfred E. ” because
we’ve left a space after the period.

To also match patterns that contain characters after the period, we
would need to add a final % to the pattern:

SELECT * FROM contributors WHERE first_name LIKE '% _.%';

Now we’re matching the pattern “any series of zero or more characters,
followed by a space, followed by a single character, followed by a
period, followed by any series of zero or more characters.” (So, our
little pattern expresses a pretty complex thought.)

Of course, we could just match any first_name that contains a period,
like this:

SELECT * FROM contributors WHERE first_name LIKE '%.%';

But then we also get names like “S. Truett,” which may or may not be
what we intended.

Note: Some database systems include other wildcard characters to be used
in patterns. For example, in some systems the pattern [xyz] will match
one of the characters “x,” “y” or “z.” And the pattern [^xyz] will match
any character that is not an “x,” “y” or “z. SQLite does not, by
default, support this wildcard.

Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER()

Using LIKE for partial matches can be pretty powerful, but as we’ve
seen, patterns aren’t exactly beach reading. Another way to do partial
matching is to use string functions to manipulate the values. String
functions usually take the form of a keyword followed by parentheses.
The parentheses contain any arguments we want to pass to the function.
The general format looks like this: KEYWORD (ARG1, ARG2, ARG3). Usually
the first argument is the string we want to manipulate. Here are some
commonly used string functions:

SUBSTR()

The SUBSTR() function takes the string we hand it in the parentheses and
returns a part of the string that we define (ergo, substring).

As we’ll see with other string functions, this string argument can be - and
typically is - the name of a column in a table. This gives us the power
to manipulate all the values for a given column (or perhaps a limited subset).

To determine which part of the string to return, SUBSTR() accepts
a few additional arguments beyond the field that we’re targeting:

	the starting point of the desired substring (counting characters from the left)

	the number of characters to grab from that starting point

The full function call takes this form: SUBSTR (STRING, START_POINT, LENGTH).
The third argument is optional. If we leave it off, SUBSTR() returns all
characters from the given starting point to the end of the string.

An example is probably more helpful. So, here is the ZIP query from
earlier, rewritten to use a substring match in the WHERE clause of the query:

SELECT zip FROM contributors WHERE SUBSTR(zip, 1, 5) = '77566';

Above, we’re asking for all ZIP codes in the table whose first five
characters match ‘77566’. This query will return the same result set
we saw earlier: 775661497 and 77566036.

Functions can also be used in the SELECT clause of the query, so we can
do something like this:

SELECT SUBSTR(zip, 1, 5) FROM contributors;

Now we’re getting the five-digit representation of all ZIPs in the
table (and dropping the extra four digits from the ZIP+4s):

[image: select_substr]

TRIM()

The TRIM() function is most frequently used to trim white space from
either side of a string. During data entry, strings are often
accidentally inserted with leading or trailing whitespace. To simulate
this case, let’s mess up the data even more:

UPDATE contributors SET state = ' GA ' WHERE last_name = 'Cathy';

Now try selecting all rows where the state field is equal to ‘GA’ (with no extra surrounding
spaces around the state postal):

select * from contributors WHERE state = 'GA';

[image: select_ga]

So, now Cathy isn’t appearing in our list of Georgians. Even worse,
we’ve created a new state:

SELECT DISTINCT state FROM contributors;

[image: distinct_state_space]

We can use TRIM() to clean things up:

UPDATE contributors SET state = TRIM(state);

Notice here that we’re not using a WHERE clause on the UPDATE statement.
This means that all rows will be updated, which is usually not what you
want at all. Consider if we had used SET state = 'GA' in the statement
above; we’d now have a table full of Georgians and a mess to clean up.
Because we’re using a function, rather than a literal string here, we
can update everything at once, trimming the white space from the front
and end of every state value. The function operates on the value in the
state column for each row in turn.

And now we’re back to normal:

SELECT DISTINCT state FROM contributors;

[image: select_distinct_state_normal]

The TRIM() function can also be used to strip characters other than
spaces from the front and end of a string, although this usage is
probably less common. To tell TRIM() which characters to remove, pass a
second argument which contains any characters to be removed. For
example, TRIM (state, '.,') would remove any periods or commas appearing
at the beginning or end of the state name (i.e. “GA.” would become
“GA”).

UPPER() and LOWER()

Another common problem in dirty data is inconsistencies in
capitalization. For example, let’s find all of the contributors from
Birmingham, Alabama:

SELECT * FROM contributors WHERE state = 'AL' AND city = 'Birmingham';

Hmm … apparently there aren’t any.

But when we check on all contributors from Alabama, we get a
different story:

SELECT * FROM contributors WHERE state = 'AL';

[image: alabama]

So, the problem is that Birmingham isn’t properly capitalized. Now, we
could do a SELECT using city = 'birmingham', but then we’d miss any rows
that properly capitalize the city name. And what about rows that use ALL
CAPS?

An easy way to get around these issues of case-sensitivity is to use the
UPPER() or LOWER() string functions to standardize capitalization on the
values:

SELECT * from contributors WHERE UPPER(city) = 'BIRMINGHAM';

The UPPER() function translates each letter in the city value to upper
case.

Note that we are not changing the values in this column to upper-case. Instead,
we’re dynamically modifying the values in our WHERE clause purely for the
purposes of matching records in a select query, leaving the original values unchanged.

As a result, this query will give us the lower-case version, but it will also match “Birmingham” and “BIRMINGHAM” (not to mention
“BIRMingham”), as they will all be rendered as “BIRMINGHAM” by UPPER().

Note: By default LIKE is not case-sensitive in SQLite,
but that is not true of all database management systems. Also, in some other database
systems, such as MySQL, the basic equality operator (=) is case
insensitive, but that’s not true in SQLite, and it isn’t true in other
systems. When in doubt, it’s safer to use LOWER() or UPPER() to ensure
case insensitivity. (Also, some databases use UCASE() and LCASE() rather
than UPPER() and LOWER().)

Pull yourself together: The concatenate operator (||)

Sometimes we want to combine values from different columns, either in
the WHERE clause or for the results. SQLite uses double-pipes (||) -
more formally known as the concatenation operator - to combine strings.
You can combine both literal strings (in quotation marks) and column values using
this operator.

Say, for instance, we want a nicely formatted list of cities and states
for contributors. To create a single result column that contains the
city and state separated by a comma, we can use this query:

SELECT city || ',' || state FROM contributors ORDER BY state, city;

We insert the comma and space as a literal string concatenated with
the values from the city and state columns.

[image: image14]

Note: Some other database management systems, such as MySQL use the
CONCAT() function to perform concatenation. For example,
SELECT CONCAT (city, ', ', state) FROM contributors; will not work in SQLite.

Pick One: Using BETWEEN and IN (NOT IN)

Often you’ll want to get a value from within a range. The BETWEEN
operator can do exactly that. Let’s see which of our contributors has
given between 500 and 1000 dollars:

SELECT * FROM contributors WHERE amount BETWEEN 500 AND 1000;

[image: between]

Note: This query returns the same results as
SELECT * FROM contributors WHERE amount >= 500 AND amount <= 1000; — but it’s much
more readable.

At other times, you may need to match values from within a set of
choices. This is where the IN operator comes in handy. Let’s find all
contributors from a few southern states:

SELECT * FROM contributors WHERE state IN ('AL', 'GA', 'FL');

The choices are surrounded by parentheses and separated by commas. And
don’t forget the quote marks around literal strings. here’s the
result:

[image: in]

Again, you could have used a compound statement with state = 'AL' OR
state = 'GA' OR state = 'FL' to achieve the same result, but the IN
syntax makes things much clearer, and it’s easier to write.

You can also use NOT IN to find results where a value is not included in
the given set:

SELECT * FROM contributors WHERE state NOT IN ('CA', 'OR', 'AZ');

But beware that NOT IN won’t work with null fields. So, if one of the
rows has a null value for state, it would not be returned by the query
above.

Aggregate Functions: COUNT, MAX, MIN, SUM, AVG

Aggregate functions allow us to perform calculations on values across
rows. Using them, we can start to do some pretty interesting data
analysis. To specify a column to use for the aggregate, pass the column
name as the argument in parentheses: e.g. COUNT (counted_column). Here’s
a quick run through some useful aggregate functions:

COUNT()

How many contributors do we have from California?

SELECT COUNT(id) FROM contributors WHERE state = 'CA';

[image: count_ca]

The COUNT(id) function counts the number of unique ids. We could also
have used COUNT(*), which will count the number of rows. The result
will be the same.

COUNT() can also be used with DISTINCT to return the number of distinct
instances. For example, how many distinct ZIP Codes are there in the
table?

SELECT COUNT(DISTINCT zip) FROM contributors;

Note that the the DISTINCT keyword comes inside the parentheses. It
is part of the argument passed to COUNT().

[image: distinct_zip]

MIN() and MAX()

What is the maximum amount that any of our contributors has given?

SELECT MAX(amount) FROM contributors;

[image: max_amount]

SUM()

What is the total amount of contributions from Georgia?

SELECT SUM(amount) FROM contributors WHERE state = 'GA';

[image: sum_ga]

AVG()

What is the average amount contributed?

SELECT AVG(amount) FROM contributors;

[image: avg_amt]

Of course, the usual caveats about using averages apply. I heard a nice
example recently: “Which major at UNC produces graduates with the
highest average salary?” Apparently, it was Geography - Michael Jordan’s
major. Even if it isn’t true, it’s a nice warning about the way outliers
can skew averages.

Beyond functions: Custom calculations

We’ve learned about many of the built-in functions that SQL provides for manipulating
strings and summarizing data
with aggregates. But what if SQL doesn’t provide
a ready-made function for the task at hand?

Fortunately, SQL supports the ability to perform ad hoc calculations
in the SELECT clause 1.

Here’s a really basic example:

select 1 + 2

[image: one_plus_two]

Simple, though not very useful. Things get more interesting
when you start performing calculations on data.

Say that we wanted to know the average contribution amount for the entire data set.

We’ll pretend for now that we don’t already know about the built-in
AVG function.

You can find that number by summing up all contributions and
dividing by the total number of contributions:

SELECT sum(amount) * 1.0 / 103
FROM contributors;

[image: avg_contrib_hardcoded_count]

Note that above, we’ve multiplied the sum of contributions (sum(amount))
by 1.0. This forces the amount – which is an integer – to be treated
as a decimal.

Failing to do so will result in SQLite dropping the numbers after the decimal,
causing you to lose precision that may be important in a given query:

[image: avg_non_decimal]

Also note that we can make this query more flexible by updating
the calculation to use the built-in COUNT function,
instead of hard-coding the value.

SELECT sum(amount) * 1.0 / count(*)
FROM contributors;

[image: avg_contrib_dynamic_count]

These examples are fairly simple, but hopefully they demonstrate SQL’s flexibility.
Built-in functions are quite handy, but there will likely come a time when
you need a custom calculation - perhaps in combination with a built-in function -
to get the job done.

Footnotes

	1

	Custom calculations work in other clauses as well, such
as in WHERE clauses. We focus on SELECT here because it’s
one of the most common use cases for custom calculations.

Subqueries, the Russian dolls of SQL

When doing analysis, we often want to base one query on the results of
another query. For example, we used the MAX()
function to determine the maximum amount contributed. But what if we
want to know who actually gave that maximum amount? We could try something like this:

SELECT * FROM contributors WHERE amount = MAX(amount);

But we won’t like the results:

[image: error_aggregate]

We could also simply run two different queries, one to get the maximum
amount, and another to find rows matching that amount:

SELECT MAX(amount) FROM contributors;

..which returns 2400.

SELECT * FROM contributors WHERE amount = 2400;

While that would work, it’s a little clunky and brittle: If the
database is being updated often, we’d always have to run the lookup for
MAX() first, in case the maximum amount changed between queries.

Wouldn’t it be nice to be able to combine those two queries into one statement?
Well, we’re in luck - a subquery is up to that task:

SELECT * FROM contributors WHERE amount = (SELECT MAX(amount) FROM contributors);

[image: subquery_max]

The subquery appears in parentheses, and it stands in for the value we
want to test against amount. The subquery is executed first, and its
result is used in the outer query. Because the subquery returns 2400,
the query above gives the same result as a query for amount = 2400.

This statement works because our subquery only returns a single value
(the value of MAX(amount)). It’s also possible to use a subquery that
returns multiple results, but in that case, we can’t use the = operator.

If we wanted, for example, to get the total contributions from the top
20 contributors, we would have a list of 20 rows we want to match
against. That’s where our new friend IN comes to the rescue:

Note that we’re spreading the query across multiple lines
since the query statement is starting to get long.
Formatting SQL statements in this way helps with readability
as you start writing increasingly complex queries.

SELECT SUM(amount)
FROM contributors
WHERE id IN (
 SELECT id FROM contributors ORDER BY amount DESC LIMIT 20
);

The subquery returns the ids of the first 20 rows ordered by amount. The
outer query asks for the sum of all amounts where the unique identifier
for our contributor is in the results of our subquery. When we put them
together, we get the sum of the amounts for the top 20 contributors:

[image: sum_top_20]

Note that there are other contributors in the list who have also donated
2100 (the smallest amount in the top 20), so the cut-off point is
arbitrary. Depending on the story, we might want to do something more
sophisticated with this query, such as looking for the sum of all
amounts less than 500, or something even more ambitious, such as looking
for the sum of all amounts within a certain percentile.

Subqueries can also be used with DELETE,
UPDATE and INSERT
statements.

GROUP BY

With some aggregate functions in our tool belt, we’re ready to take
advantage of one of SQL’s more powerful features: GROUP BY. The GROUP BY
statement is used in conjunction with aggregate functions to group the
results by a given column. Doing so allows us to write queries that
return counts, sums, averages, minimums and maximums
per group.

For Excel users, this feature mirrors the functionality of PivotTables.

So, what is the total amount of contributions per state?

SELECT state, SUM(amount)
FROM contributors
GROUP BY state;

[image: amount_by_state]

It’s also possible to group by a combination of columns. So, we can get
totals by city and state, as well:

SELECT city, state, SUM(amount)
FROM contributors
GROUP BY city, state;

[image: amount_by_city_state]

And we can use the aggregate function in an ORDER BY
statement to sort the results by total amount:

SELECT city, state, SUM(amount)
FROM contributors
GROUP BY city, state
ORDER BY SUM(amount) DESC;

[image: city_state_by_amount_desc]

The syntax of this last statement is a little tricky. The columns to
group by are separated by commas, but there is no comma before ORDER BY
or DESC.

Most relational database management systems require that every
non-aggregate field in the SELECT statement also be included in the
GROUP BY statement 1. Because SUM(amount) is an aggregate, we can include
it in the SELECT statement, even though it isn’t included in the
GROUP BY list. But if we want to include city in the SELECT,
we should also include it in the GROUP BY as well.

Footnotes

	1

	SQLite doesn’t enforce this standard SQL restriction, which in some
cases makes writing the query much simpler but in most cases can lead to
unexpected results. But as a general practice and to make your queries portable to other
systems, you should always include all columns for the SELECT in the
GROUP BY list. If including that column in the GROUP BY isn’t possible,
then you’ll probably need to use a subquery to create
the desired result.

HAVING

Now that we understand grouping and aggregates,
let’s try filtering the results based on an aggregate. To start, let’s find all
cities for which contributions total more than $3,000. Here’s a first stab at
the query:

SELECT city, state, SUM(amount)
FROM contributors
WHERE SUM(amount) >= 3000
GROUP BY city, state
ORDER BY SUM(amount) DESC;

And … no.

[image: warning_aggregate_where]

The error message isn’t very helpful, but you can see “misuse of
aggregate: SUM()” is mentioned.

Turns out that aggregate functions can’t be used in a WHERE clause. The
WHERE clause acts as a filter on each row in turn, but here we want to
test an expression against an aggregate value for a group of rows (SUM(amount)).

The equivalent of a WHERE clause for aggregates is HAVING.
It appears after the GROUP BY:

SELECT city, state, SUM(amount)
FROM contributors
GROUP BY city, state
HAVING SUM(amount) >= 3000
ORDER BY SUM(amount) DESC;

[image: having_amount_greater]

To get a better sense of the difference between WHERE and HAVING, let’s
first look at a fairly simple query using WHERE:

SELECT city, state, amount
FROM contributors
WHERE amount >= 2300;

This query looks for individual contributors who have given at least
$2,300, and it returns their city, state and amount.

[image: where_gt_2300]

Now let’s make this into an aggregate query by adding a GROUP BY and an
aggregate function:

SELECT city, state, SUM(amount)
FROM contributors
WHERE amount >= 2300
GROUP BY city, state;

[image: where_gt_2300_with_group]

We have the same nine cities that we had in the first query (those
cities in which someone donated at least $2,300). But now, rather than
having one row per contributor, we have one row per city. The GROUP BY
eliminates the duplicate entries for cities in which more than one
person contributed at least $2,300. And by using the aggregate function
for SUM (amount), we’re adding up all contributions of at least $2,300
for each city.

Now let’s further filter this list of cities. We want to look only at
cities in which these large contributions ($2,300 or greater) made a big
difference. Let’s call $4000 a big difference, for the sake of argument.
So, we want only those cities for which the total amount of
contributions at this size exceeds $4000.

Looking at the results from the last query, we know to expect 3 rows,
but it’s not always so easy to see.

Here goes:

SELECT city, state, SUM(amount)
FROM contributors
WHERE amount >= 2300
GROUP BY city, state
HAVING SUM(amount) > 4000;

And bam! We now have a list of cities where large contributions totaled more than $4000.

[image: where_plus_having]

Revisiting subqueries

Before wrapping up Part II, let’s revisit subqueries.

Recall that subqueries are SQL queries nested inside of a larger SQL statement.
They’re especially useful for dynamically filtering results on the fly as part of
the WHERE clause. As we saw earlier, subqueries let us base the results of
one query on the results of another, without having to run the queries separately.

But subqueries aren’t limited to use in the WHERE clause. Another
powerful – and perhaps surprising – use of subqueries is in SELECT.

For example, say that you wanted to determine the percentage of all contributions
that came from each state.

You could perform this operation with two separate queries,
starting with a sum of all contributions:

select sum(amount) from contributors;

The above query gives us a total of $106,865.

Next, we can use GROUP BY to sum contributions by state, and
divide those totals by the sum of all contributions that we calculated above:

SELECT
 state,
 ((sum(amount) * 1.0) / 106865) * 100
FROM contributors
GROUP BY state;

[image: state_contrib_pct_hardcoded]

This works, but wouldn’t it be nice if we could dynamically calculate the sum
of all contributions, rather than hard-code the total from the first query? That way, our
calculation should “just work” if we add more contributions to the database.

This is where the SELECT subquery can work its magic:

SELECT
 state,
 ((sum(amount) * 1.0) / (select sum(amount) from contributors)) * 100
FROM contributors
GROUP BY state;

[image: state_contrib_pct_dynamic]

Above, we’ve simply replaced the hard-coded sum of all contributions
with the query that generated the value. SQLite will calculate this total once
and use it to determine each state’s percentage of overall contributions.

Not too shabby. Subqueries in select statements can clearly be a powerful tool
in your SQL skill set, especially when combined with aggregates, GROUP BY and
other SQL features we’ve covered in Part II.

A word of caution

With this new power, of course, comes responsibility. As you begin writing
increasingly complex queries, they will become harder to read – not to mention debug.

Be cautious as you craft such queries, making sure to format the SQL in a readable
way. Execute subsqueries independently before dropping them into a larger
SQL query, to ensure they’re performing as expected. And for especially tricky syntax,
add code comments [https://www.w3schools.com/sql/sql_comments.asp] to explain the logic.

Conclusion

So, now you can construct a vast array of query types in SQL. Using
subqueries, aggregates and
GROUP BY, you should be able to ask nearly anything of a
single data set that you need.

In the next part, we’ll move on to exploring relationships between data sets,
and you’ll be able to amaze your friends and colleagues with your raw
SQL power.

See you in Part III.

Part III

	Spreading the data around: Data Normalization

	Referentially speaking: Associating tables using foreign keys

	Reaching across the aisle using JOIN

	Explicit JOIN syntax

	OUTER JOIN

	Why be normal? Denormalization as an informed choice.

	Conclusion

	Further Resources

[image: _images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Spreading the data around: Data Normalization

All of the queries we’ve run so far are limited to a single table. If
all you ever do is import data from a spreadsheet, then you could always
limit your queries to a single table. But most data projects of any
depth soon involve multiple database tables.

Why would you want to separate the data into different tables? Well
let’s think back for a moment to the description of relational databases
from Part I:

	Data is organized into tables (relations) that represent a collection
of similar objects (e.g. contributors).

	The columns of the table represent the attributes that members of the
collection share (last name, home address, amount of contribution).

	Each row in the table represents an individual member of the
collection (one contributor).

	And the values in the row represent the attributes of that individual
(Smith, 1228 Laurel St., $250).

So, a table represents a set of similar objects, and the objects all
share certain attributes. But we could stretch that definition quite a
bit: Contributors all have addresses, but they also have recipients (the
candidates who received the contributions). Should we include in our
contributors table the candidate name, the campaign address and
phone number, the office sought, the state in which the candidate is
running, etc? What about the campaign treasurer’s name? Committee
positions the candidate holds? Previous offices held?

Including all of this loosely related data in a single table takes us
pretty far afield of the original relation (Contributor). We would also
be storing a lot of redundant data (all of the candidate data would be
repeated for each contribution to a candidate). As a result, it could
become difficult to update the data. Changing a candidate’s address, for
example, would require a change to each row containing a contributor to
that candidate. In addition, it would become increasingly difficult to
spot any data entry errors. Each misspelling of a candidate’s name would
be like adding a new candidate, and it would be easier to overlook the
error amidst all the repeated data. Finally, all of this redundancy
means we’re taking up more disk space than needed. (This last isn’t as
big a concern as it once was when disk space was more expensive, but it
can present problems.)

So, in order to help ensure data
integrity [http://en.wikipedia.org/wiki/Data_integrity], to keep
tables logically coherent and to reduce disk usage, most database
designers implement some degree of data
normalization [http://databases.about.com/od/specificproducts/a/normalization.htm].
There are varying degrees of normalization, known as the “normal forms,”
but for practical purposes the goal is to remove repetition and to keep
only clearly related data in the same table.

So, let’s go back to our hypothetically bulky contributors table
and do some minimal normalization. Let’s begin by imagining a table that looks
like this:

	last name

	first name

	street

	city

	state

	zip

	amount

	date

	candidate last name

	candidate first name

	candidate party

	Ahrens

	Don

	4034 Rennellwood Way

	Pleasanton

	CA

	94566

	250.00

	2007-05-16

	Huckabee

	Mike

	R

	Agee

	Steven

	549 Laurel Branch Road

	Floyd

	VA

	24091

	500.00

	2007-06-30

	Huckabee

	Mike

	R

Even with only two sample rows, it’s easy to see the redundancy here.
Any place we see repetition has potential for some normalization.
Also, it’s fairly clear that the table really represents two different relations
(contributors and candidates). So, one approach to restructuring this data is to create
contributors and candidates tables and separate the data accordingly.

To get started, let’s create a fresh database. Start up DB Browser for SQLite and
perform the following steps:

	Click the New Database button and create a database called contributors_candidates.

	Save it somewhere you can find it, such as the Desktop.

Next, we’ll create the candidates table. Here’s the SQL CREATE
TABLE statement to execute:

CREATE TABLE "candidates" (
 "id" INTEGER PRIMARY KEY NOT NULL,
 "first_name" TEXT NOT NULL,
 "last_name" TEXT NOT NULL,
 "middle_name" TEXT,
 "party" TEXT NOT NULL
);

This should all be old hat by now. We’re just creating a table for the
candidates, including some basic information (name and party), and
adding a PRIMARY KEY, a unique identifier for each candidate.

Now, let’s add some data to that table. Download candidates.txt
and import it using the File -> Import -> Table from CSV file… menu (see
Importing Data for more details).

	For the “Table name” field, the value should say candidates

	Make sure there’s a check mark in the “Column names in first line” box

	And set the “Field separator” value to Pipe (|).

	Click OK and when prompted, confirm that you want to
import the data into the existing candidates table.

You should now have 17 rows in the candidates table:

[image: browse_candidates]

So now, rather than having candidate data included with each row of the
contributor data, we have one row for each candidate. It’s a much
cleaner data structure.

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Referentially speaking: Associating tables using foreign keys

So, now we have the candidates table, but we also have a problem. Now
that we’ve moved the candidate data out of the contributors table,
how do we link contributors to their candidates? Without this link, we
have no way of running queries that give, for example, total
contributions per candidate. To create this reference between the two
tables, we’ll need a common field that the two tables share. The
standard way of setting up this relationship is to include the Primary
Key from the referenced table as a field in the referencing
table. The new column in the referencing table is known as a Foreign
Key [http://en.wikipedia.org/wiki/Foreign_key].

Simply creating this foreign key column in the referencing table would
be enough to let us run queries across both tables, but SQL also allows
us to explicitly declare the foreign key and thus enforce this reference
at the database level.

So, let’s create a new contributors table, but in addition to the
data about the contributor, let’s add a candidate_id field and let
SQLite know that it is a foreign key referencing the id column in
the candidates table:

CREATE TABLE "contributors" (
"id" INTEGER PRIMARY KEY NOT NULL,
"last_name" TEXT,
"first_name" TEXT,
"middle_name" TEXT,
"street_1" TEXT,
"street_2" TEXT,
"city" TEXT,
"state" TEXT,
"zip" TEXT,
"amount" INTEGER,
"date" TEXT,
"candidate_id" INTEGER NOT NULL,
FOREIGN KEY(candidate_id) REFERENCES candidates(id)
);

Notice the last two lines of that CREATE statement. The penultimate line
adds the candidate_id column, defines it as an integer, and makes it
a required field (it cannot be null). The final line defines
candidate_id as a foreign key referencing the id column in the
candidates table.

Now SQLite will enforce this reference, and if we try to enter a row in
the contributors table without a candidate_id or using a
candidate_id that doesn’t actually appear in the candidates
table, we’ll get an error. In other words, every contributor must now
have a candidate, and that candidate must already exist in the
candidates table.

Now let’s add some contributor data to the table. Download the text file at
contributors_with_candidate_id.txt
and import it into the contributors table using the
File -> Import -> Table from CSV file… wizard:

[image: image5]

	NOTE: You’ll have to set the table name to contributors.
Otherwise, SQLite will create a new table called
contributors_with_candidate_id, based on the name of the text
file.

	Make sure there’s a check mark in the “Column names in first line” box

	And set the “Field separator” value to Pipe (|).

	Click OK and when prompted, confirm that you want to
import the data into the existing contributors table.

You should now have 175 rows in the contributors table 1:

[image: image6]

Footnotes

	1

	A quick aside about the text file: It contains a pre-populated id column,
so we’ll have unique Primary Key values. For the
candidates table, we specified the id field in each row so that
they would match the candidate_id values in this data. In a real
project, we would probably use autoincrementing values for the ids in
the candidates table, and populating the candidate_id field in
the contributors table with the appropriate value would be a
separate task.

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Reaching across the aisle using JOIN

One way to run a query that uses data from two different tables is to
use a subquery.

For example, to find all of the contributors to Barack Obama, you can
do something like this:

SELECT *
FROM contributors
WHERE candidate_id = (
 SELECT id
 FROM candidates
 WHERE last_name = 'Obama' AND first_name = 'Barack'
);

This approach works fine as long as you’re simply looking up values in
one table and using them in the conditions for the WHERE clause. But
often the queries you’ll want to run will need to treat the two tables
as a combined data set. A query that combines the data from two tables
is known as a join on the tables. It is possible to do an implicit
join simply by defining the relationship between the two tables in the WHERE clause:

SELECT contributors.last_name,
 contributors.first_name,
 candidates.last_name
FROM contributors, candidates
WHERE contributors.candidate_id = candidates.id;

[image: image7]

Notice that we’re including both of the tables in the FROM clause.
Also notice that we’re using a fully-qualified version of the column
names: contributors.last_name, candidates.last_name.
We’re including the table name here because last_name appears in both tables. So,
just using last_name, as we usually would, would be ambiguous (the
last name of the contributor or the last name of the candidate?).
Adding the table name and a dot (.) before the column name disambiguates the column.

Using Aliases

Including the full table name with each column name can become a bit
tedious. So, SQL allows you to define an alias [https://www.w3schools.com/sql/sql_alias.asp]
for the table. To do so, simply include the alias after the table name in the FROM clause. Then
you can use that alias, rather than the full table name, elsewhere in
the query:

SELECT a.last_name, a.first_name, b.last_name
FROM contributors a, candidates b
WHERE a.candidate_id = b.id;

This query returns the same results as the one above, but it saves
some typing by making “a” an alias for contributors and “b” an alias
for candidates. The alias can use any valid table name you
like, but obviously shorter aliases will save more typing, while
longer ones may make the intention of the query easier to understand.

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Explicit JOIN syntax

In addition to the implicit join syntax, SQL includes an explicit
JOIN keyword. So, we could write the earlier query using this syntax instead:

SELECT contributors.last_name,
 contributors.first_name,
 candidates.last_name
FROM contributors
JOIN candidates ON contributors.candidate_id = candidates.id;

The query results should be the same as earlier, but using the JOIN
keyword makes the intent of the query more explicit.

Aliases work with JOIN as well:

SELECT a.last_name,
 a.first_name,
 b.last_name
FROM contributors a
JOIN candidates b ON a.candidate_id = b.id;

Now let’s try something a bit more interesting:

SELECT b.id, b.last_name, count(a.id)
FROM contributors a
JOIN candidates b ON a.candidate_id = b.id
GROUP BY b.id, b.last_name;

[image: image8]

Excellent! We now know that we have 25 contributors for each candidate.
Very cool. But, hey, wait. Our list of candidates seems to be coming up
short. Let’s check it:

SELECT DISTINCT id, last_name FROM candidates;

The above query shows that we have 17 candidates total – in other words,
the JOIN query is missing 10 candidates. What going on here? SQLite has gone mad!

Actually, there’s a pretty sensible explanation for this result. We said
earlier that performing the JOIN would return the same results as the
query with this clause: WHERE contributors.candidate_id = candidates.id.

What if a candidate has no contributors? Then that candidate is not
returned by the query.

The JOIN acts just like the WHERE clause and filters out any rows that
don’t match the condition defined. Joins that return only rows in which
there is a match in both tables are known as INNER JOINs [https://www.w3schools.com/sql/sql_join_inner.asp].
This is often exactly the behavior you want from the join (ignore any rows from
either table that don’t relate to a row in the other table). So by
default, the JOIN keyword executes an INNER JOIN. You can also
explicitly request an INNER JOIN, just to make things clearer:

SELECT b.id, b.last_name, count(a.id)
FROM contributors a
INNER JOIN candidates b ON a.candidate_id = b.id
GROUP BY b.id, b.last_name;

The results will be the same.

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

OUTER JOIN

But how do we get the full list of candidates along with the number of
contributors for each, including those candidates who have no
contributors in our data set? SQL provides the “OUTER JOIN” syntax for
doing just that. Outer joins are typically defined by the table from
which we want to include non-matching rows, and we do so by referring to
where that table appears in the JOIN statement.

	A LEFT OUTER JOIN includes all rows from the table on the left side
of the statement and only matching rows from the table on the right
side of the statement.

	A RIGHT OUTER JOIN includes all rows from the table on the right side
of the statement and only matching rows from the left side of the
statement.

	A FULL OUTER JOIN includes all rows from both tables.

Currently, SQLite only supports LEFT OUTER JOIN from the list above, but
some other database management systems support the other two types as
well.

Note

It’s easy to perform a RIGHT OUTER JOIN in SQLite by
simply reversing the order of tables and using a LEFT OUTER JOIN. It’s
also possible to do a FULL OUTER JOIN by combining LEFT OUTER JOINs
using the UNION [https://www.w3schools.com/sql/sql_union.asp] keyword.

This all probably makes more sense in an example. Let’s rewrite the
grouping query from earlier to include all candidates:

SELECT candidates.id,
 candidates.last_name,
 count(contributors.id)
FROM candidates
LEFT OUTER JOIN contributors ON candidates.id = contributors.candidate_id
GROUP BY candidates.id, candidates.last_name;

(Aliases would work here as well, but I’ve used the full table names to
make the relationships clearer.)

Notice the JOIN statement: candidates LEFT OUTER JOIN contributors.
Because candidates is on the left side of that statement, the result
set will include all of the candidate rows, even those for which there
are no matching contributors:

[image: image10]

Much better.

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Why be normal? Denormalization as an informed choice.

Looking at the candidates table, there is another column showing some
repetition: party. Many database designers would extract this column
into its own table and then include a party_id foreign key in the
candidates table. It might be a good idea here to use that id rather
than a text field; as it stands, if the data came in with “R,”
“Republican” and “GOP” all appearing in that column, we would have a
real mess. If we had a parties table that included only “R,” “D” and
“I” (for independent), then we’d know we have a nonstandard value coming in when we tried
to look up the party_id for “GOP,” for example.

But normalization comes with a cost. Adding that parties table would
mean that, any time we want to show candidate name and party, we’d have
to do a join. And if we wanted contributor, candidate, and party, we’d
have a query with two joins:

SELECT contributors.last_name,
 candidates.last_name,
 parties.name
FROM contributors
JOIN candidates ON contributors.candidate_id = candidates.id
JOIN parties ON candidates.party_id = parties.id;

Doing multiple joins can become rather expensive in terms of memory, so
often developers will create summary tables from the output of a SELECT:

CREATE TABLE contributors_candidates AS
 SELECT contributors.last_name,
 candidates.last_name,
 parties.name
 FROM contributors
 JOIN candidates ON contributors.candidate_id = candidates.id
 JOIN parties ON candidates.party_id = parties.id;

But any changes to the contributors or candidates tables would
immediately make this summary table out of date, so you’d have to create
a way to update the summary table with each change.

There is another approach: denormalization. That is, collapsing your
normalized data into a single table. If you’re interested, check out the
blog post on
codinghorror [http://www.codinghorror.com/blog/2008/07/maybe-normalizing-isnt-normal.html]
and the spirited debate in the comments. I’ll give Jeff Atwood the final
comment here: “As the old adage goes, normalize until it hurts,
denormalize until it works.”

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Conclusion

Congratulations! You now have a well-rounded set of SQL skills that
can help you wrangle and analyze the most ornery of datasets. SQL JOINs
in particular will help you design well-structured databases
and join to other data sets in pursuit of more sophisticated analyses.

Below are some topics we have not yet covered that are worth exploring:

	The UNION operator [https://www.tutorialspoint.com/sqlite/sqlite_unions_clause.htm],
which allows you to combine results from multiple queries

	Database optimization using indexes [https://www.tutorialspoint.com/sqlite/sqlite_indexes.htm]

	Database views [https://www.tutorialspoint.com/sqlite/sqlite_views.htm], which can be used to store complicated queries as a virtual table

Thanks for working through this tutorial! Please drop us a note on Github [https://github.com/zstumgoren/gentle-intro-to-sql/issues] if you have
thoughts on how the tutorial can be improved.

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Further Resources

	http://www.dbbm.fiocruz.br/class/Lecture/d17/sql/jhoffman/sqltut.html

	http://zetcode.com/databases/sqlitetutorial/

	http://www.sqlite.org/lang.html

	http://www.sqlite.org/lang_keywords.html

	http://www.sqlite.org/lang_expr.html

	http://www.sqlite.org/foreignkeys.html

	http://en.wikipedia.org/wiki/SQL

[image: ../_images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Appendix

Some useful things that go beyond the more general realm of SQL.

	Importing data from a file

	Saving scripts

[image: _images/88x31.png]
A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License [http://creativecommons.org/licenses/by-nc-nd/3.0/].

Importing data from a file

One common task we all face in data management is
importing a data set into the database. Often, we receive a file in
some other format such as MS Excel, CSV (comma-separated values) or
tab-delimited and we want to get those values into a database table in
order to run SQL queries on them.

Each database management system handles importing values from a file a
bit differently. DB Browser for SQLite provides a nice interface for
performing data imports from text files.

First, let’s grab a plain text file full of contributors from the FEC
database. Download contributors.txt
and save it somewhere you can find it (your Desktop is a good place).

Check out the first few lines of the file below. Notice that this file is
pipe-delimited (the columns are separated by
the | character).

[image: image1]

I find this delimiter easy to use because it’s
unlikely to appear within a value in the import data. But using comma or
tab characters to separate the values will work as well.

Now that we know what we’re importing, let’s try importing the data into the
“contributors.db” we created in Part 1
of the tutorial.

	Fire up DB Browser

	Click “Open Database”

	Locate your “contributors.db” file and click OK

	Start up the import wizard by selecting File -> Import -> Table from CSV file...

	Navigate to the “contributors.txt” file that you downloaded, and click Open.

The import wizard should appear, which you can use to define your
import.

[image: image2]

	Check the “Column names in first line” checkbox.

	Select the pipe(|) for “Field separator”

	Uncheck the “Trim fields?” checkbox

For everything else, you can keep the default selections.

Click OK and you should get a pop-up notifying you that a table of the same
name (contributors) already exists, and asking if you want to import the
data into that table.

[image: image3]

Click “Yes” and the data import should proceed.

You should now have 103 rows of data to play with (the newly imported 100 rows,
plus the original three add during the Inserting Data section).

The FEC data is dirty: there are missing fields, first names include middle names, there are
weird values for some columns. Play around with it using the SQL you
know, and see what you can find out. If you get surprising results from
a query or are wondering how to do something, add a comment to the blog
post.

You should also save the database changes you’ve made so far so you don’t
lose your work. You can save the changes by clicking the “Write Changes” button:

[image: image4]

Saving scripts

As you start writing more SQL, it’s helpful to work on each query
in a separate SQL pane and to save your work as reusable scripts.

DB Browser for SQLite offers a few handy features for this workflow,
including the ability to save and re-open scripts.

If you navigate to the Execute SQL panel, you should see a series of buttons towards the
upper left that look like this:

[image: sql_new_open_save_tab]

You can create new tabs for additional SQL queries by clicking the Open tab button ([image: open_tab]).

You can save the SQL in any tab using the Save SQL file button ([image: save_sql_button]).
This will fire up a window that lets you choose a location and name for your script.

Scripts should always have a .sql file extension, e.g. my-awesome-script.sql

[image: save_sql_window]

Finally, you can re-open a saved script by clicking the Open SQL file button ([image: open_sql_file_button]).

Index

 _static/appendix/contributors_sample.png
L] contributors.txt -
d|last_name|first_name|city|state|zip|amount
5|Helen| |Washington|DC|200122649|15
6|Vespa|Anthony |Franklin Lakes|NJ|074172831|50
7|Cohen|Jared |Sandwich |MA|02563 |50

_static/appendix/import_confirmation.png
= Thereisaiready a table of that name. Do you
° /' wanttoimport the data into it?

_static/up-pressed.png

_static/up.png

_static/appendix/import_contributors.png
"4 Import CSV file

Table name contributors|

Column names in first line
Field separator |

Quote character

Encoding UTF-8

Trim fields?

id last_name
15 Helen
2 6 Vespa
37 Cohen
4 8 Albrecht
5 9 Vespa
6 10 Varley

first_name city

Washington ~ DC

Anthony Frankiin Lakes NJ
Jared Sandwich MA
Robert woodbridge VA
Anthony Frankiin Lakes NJ
Allyson birmingham AL

state

zip

200122649
074172831
02563
22192
074172831

35242

Cancel

15
50
50
10
n

25

amount

_static/part2/not_lewis.png
1 SELECT * FROM contributors WHERE state = 'VA' AND last_name != 'Lewis’;

id lastname first name city state zip amount

18 Albrecht Robert woodbridge VA 22192 10

_static/appendix/open_sql_file_button.png

_static/part2/open_db_button.png
4 Open Database

_static/part2/one_plus_two.png

_static/part2/select_ga.png
1 select * from contributors WHERE state = 'GA' ;

id lastname firstname city state zip amount

1 3 Chambers Anne Cox Atlanta GA 30301 200

2 48 Dermer Jeffrey D. Atlanta GA 303097662 500

_static/part2/select_distinct_state_normal.png
SELECT DISTINCT state FROM contributors;

state

GA
DC
NJ
MA
VA

_static/part2/state_contrib_pct_dynamic.png
v wN e

SELECT

state,

((sum(amount) * 1.0) / (select sum(amount) from contributors)) * 100
FROM contributors
GROUP BY state]

state 3mount) * 1.0) / (select sum(amount) from contributors)

AL 1.98849015112525
AR 0.467880035558883
AZ 2.19903616712675

CA 17.274130912834

_static/part2/select_substr.png
SELECT SUBSTR(zip, 1, 5) FROM contributors;

SUBSTR(zip, 1, 5)
60601

30301
30301
20012
07417
02563
22192

07417

_static/part2/subquery_max.png
1 SELECT * FROM contributors WHERE amount = (SELECT MAX(amount) FROM contributors);

id lastname firstname city state 2ip amount

173 Offerdahl Richard E. Incline Village NV 894527899 2400

_static/part2/state_contrib_pct_hardcoded.png
lonswn

SELECT

state,

((sum(amount) * 1.0)) / 106865) * 10|
FROM contributors
GROUP BY state;

state ((sum(amount) *1.0) / 106865) * 100
AL 1.98849015112525

AR 0.467880035558883
AZ 2.19903616712675

CA 17.274130912834

_static/part2/max_amount.png
1 SELECT MAX(amount) FROM contributors]

MAX(amount)

1 2400

_static/part2/like_initial.png
10

SELECT * FROM contributors WHERE first_name LIKE %

7

8

19

20

24

25

28

29

30

31

last_name

See
Taylor
Trammell
Whitfield
Cutter
Miller
Howard
Shudlick
Furber

Furber

first_name

Alvin B,
Richard D.
Joel T.
George R.
Kerry E.
James R
Patrick G.
JonL.
Donna P.

James E.

oty
Southwick
Shreveport
Austin

Seoul Kore
Sacramento
Burtonsville
Concord

N Ft Myers
Downey

Downey

state

MA

LA

™

2z

ca

MD

NH

FL

ca

ca

2ip
010770444

711013114

787351509

11070

958643013

208661043

033022219

33917

902402634

902402634

amount

500

250

2300

1600

2100

2100

2100

500

2100

2100

_static/plus.png

_static/file.png

_static/minus.png

_static/part2/distinct_zip.png
1 SELECT COUNT(DISTINCT zip) FROM contributors;

COUNT(DISTINCT zip)
192

_static/part2/distinct_state_space.png
SELECT DISTINCT state FROM contributors;

state

L

GA

GA
bc

_static/part2/having_amount_greater.png
SELECT city, state, SUM(amount)

ERESENN

FROM contributors

GROUP BY ciy, state

HAVING SUM(@mount) >= 3000
ORDER BY SUM(amount) DESC;

city state SUM(amount)
Columbia Falls | MT | 4600

George West | TX | 4600

Penn Valley

2

4800

Downey

2

4200

San Antonio | FL | 4200

Wellsboro | PA | 4200

Westfield NJ | 4200

Houston Tx | 3850

Austin X | 3300

_static/part2/error_aggregate.png
id lastname firstname city state zip amount

misuse of aggregate function MAX(: SELECT * FROM contributors WHERE amount = MAX(amount);

_static/part2/is_not_null.png
SELECT * FROM contributors WHERE state = 'VA' AND last_name IS NOT NULL;

w N

id lastname firstname city state 2ip amount
18 Albrecht Robert woodbridge VA 22192 10

2 102 Lewis DonaldS. Virg;

Beach VA 234513838 250

_static/part2/in.png
id

10
2

a3

SELECT * FROM contributors WHERE state IN (AL, ‘GA', FL);

Jastname
Chambers
cathy
Variey
Shudick

Teasley

frstname
Anne Cox
S. Truett
Alyson
JonL.

Hary E.

city
Atlanta

Atianta

\gham
NFtMyers

Tampa

state
GA
G
A
L

L

2p
30301
30301
35242
33017

336112814

amount.

200
1200
2
500
1000

_static/part2/lewis_or_null.png
N

id
8

54

SELECT * FROM contributors
WHERE state = 'VA' AND (last_name != 'Lewis’ OR last_name IS NULL)]

last_name _first_name city state zip amount

Albrecht Robert woodbridge VA 22192 10

Rocky Mount VA 24151 500

_static/part2/last_name_NULL.png
w

1

id
54

SELECT * FROM contributors WHERE last_name IS NULL;

last_name first_name

city state zip amount

Rocky Mount VA 24151 500

_static/part2/concat_city_state.png
SELECT city ||, || state FROM contributors ORDER BY state, city

city ") Il state

Edwardsville, AL
birmingham, AL
Bryant, AR
Mesa,AZ
Tubac,AZ

Beverly Hills, CA

_static/part2/city_state_by_amount_desc.png
EENEREIN

SELECT city, state, SUM(amount)
FROM contributors

GROUP BY city, state

ORDER BY SUM(amount) DESC;

city state SUM(amount)
Columbia Falls MT 4600
George West TX 4600
Penn Valley CA 4600

Downey CA 4200

_static/part2/count_ca.png
SELECT COUNT(id) FROM contributors WHERE state = 'CA';

_static/part3/group_by_join.png
SELECT b.id, b.last_name, count(a.id)
FROM contributors a
JOIN candidates b ON a.candidate_id = b.id

ENEEIN

16

20

22

32

34

35

37

GROUP BY b.id, b.last_name;

last_name count(a.id)

Huckabee 25

Obama 25
Gidliani 25
Paul 25
Clinton 25
Romney 25
McCain 25

_static/part3/import_contributors.png
"8 Import CSV file

Table name [contrbutors

Column names in first line

Field separator |

Quote character

Encoding UTF-8

Trim fields?

o last_name
1l |1 Agee

2 2 Anrens
33 Anrens
a4 Ahrens
5|5 Akin

6 6 Akin

first_name

Steven
Don
Don
Don
Charles

Mike

middle_name

street 1

549 Laurel 8...
4034 Rennel...
4034 Rennel...

4034 Rennel...

10187 Sugar

181 Baywoo...

street2

Cancel

city
Floyd

Pleasanton
Pleasanton
Pleasanton
Bentonville

Monticello

_static/part3/group_by_left_outer_join.png
o UAWN

SELECT candidates.id,
candidates.last_name,
count(contributors.id)
FROM candidates
LEFT OUTER JOIN contributors ON candidates.id = contributors.candidate_id
GROUP BY candidates.id, candidates.last_name;

id last_.name count(contributors.id)

16 | Huckabee | 25

20 | Obama 25

22 | Giuliani 25

24 | Gravel 0

26 | Edwards 0

29 | Richardson | O

30 | Hunter 0

_static/part3/select_contributors_candidates_names.png
EFSTAENEN

SELECT contributors.last_name,
contributors.first_name,
candidates.last_name

FROM contributors, candidates

WHERE contributors.candidate_i

candidates.id{

last_name first_name last_name

Agee Steven Huckabee
Ahrens Don Huckabee
Ahrens Don Huckabee

Anrens Don Huckabee

_static/part2/sum_top_20.png
SELECT SUM(amount)
FROM contributors

IWHERE id IN (
‘T SELECT id FROM contributors ORDER BY amount DESC LIMIT 20
%

SUM(amount)

1 44500

_static/part2/sum_ga.png
1 SELECT SUM(amount) FROM contributors WHERE state = 'GA'{

SUM(amount)

11900

_static/part2/warning_aggregate_where.png
misuse of aggregate: SUM(: SELECT city, state, SUM(amount)
FROM contributors

WHERE SUM(amount) >= 3000

‘GROUP BY city, state

‘ORDER BY SUM(amount) DESC;

_static/part2/top_15_contributors.png
0

n

2

3

i

s

SELECT * FROM CONTRIBUTORS ORDER BY amourt DESC LIMIT 15]

73
15
.

19

a

6
57
103
10
2
2
2

Offerdan
Welch
Welch
Trammell
Homme!
Geisick
Hul
Davis
Weymer
Weymer
Oden
Verster
Golobek
Golobek

Cutter

firstname

Richard E.
Mark
Sheia
JoelT.
JasonE.
Shanna
Robert .
Jeremy s.
Richard A.
Jean Dea

Ray P.

Jeanette M.

Donald.
Mona

Kerry €

ey
Incine Vilage
Golumbia Falls
Columbia Fals
Austin

Penn Valley
Penn Valley
Grafton
Houston
George West
George West
Shreveport
Miami
Wellsboro
Wellsboro

Sacramento

™
™
™
"
L

PA
PA

2
804527899

599120206
599120206
787351500
959469705
959469705
032403439
770252267
780223587
780223587
061826

31431807

169011837

169011837

958643013

2400
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2100
2100

_static/part2/where_gt_2300_with_group.png
SELECT city, state, SUM(amount)
FROM contributors
WHERE amount > = 2300
ROUP BY cy, state;

FNFRNEN

city state SUM(amount)

1 Austin @ |2300

Columbia Falls | MT | 4600

o

George West | TX | 4600

4 Grafton NH | 2300

5 Houston @ |2300

_static/part2/where_gt_2300.png
@ o

SELECT city, state, amount

FROM contributors
WHERE amount >= 2300;

city amount

state
Columbia Falls | MT | 2300
MT

Columbia Falls 2300

Austin % |2300

PennValley | CA |2300

Penn Valley

g

2300

_static/part2/zip_LIKE.png
il SELECT zip FROM contributors WHERE zip LIKE '77566%';

zip
1 775661497

2 775666036

_static/part2/where_plus_having.png
SELECT city, state, SUM(amount)
FROM contributors

WHERE amount > = 2300
GROUP BY iy, state

HAVING SUM(amount > 4000}

RN

city state SUM(amount)

1 Columbia Falls | MT | 4600

2 George West | TX | 4600

3 PennValley | CA | 4600

_static/part3/browse_contributors.png
Table: | | contributors

B &

i fast_name frstname middle_name
Fiter Fiter Fiter Fiter

1 Agee Steven

2 2 Arvens Don

3 3 Arvens Don

4 4 Arvens Don

s s A Crares

. e

[y

6

seet_1

549 Laurel Bran..

4034 Rennellwo...

4034 Rennellwo,

4034 Rennellwo,

10187 Sugar Cr..

181 Bavwood L

Fiter

street 2

New Record

city
Fiter

Floyd
Pleasanton
Pleasanton
Pleasanton
Bentonville

‘Morticallo

Filter

VA

cA

"

Delete Record

state

Fiter
24091
94566
94566
94566
nn2
Ty

_static/part3/browse_candidates.png
Table: candidates B -]

10
"
2
3
14
15
1
7

“ frst_name lastrame middle_rame
Fiter ier Fiter Fiter
1 ™ Huckabeo

20 Barack Obama

2 Rudolon Gulani

2 Mice Gravel

2 Jobn Edwards

2 8l Rehardson

30 Duncan Hnter

3 Dernis Kucnicn

32 Ron paul

B Joseoh siden

3 Hilary Cinton [
35 Mie Romney

36 Samuel Brownback

5 John MeCain

3 Tom Tancredo

3 Chestopher Dodd .

a Fred Thompson o.

Fiter

party

_static/part2/sum_all_contribs.png
select sum(amouny
from contributors;

_images/order_by.png
SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount;

3

last_name amount
Winfrey | 500
Cathy 1200

Buffet

1500

_images/order_by_desc.png
1 SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount DESC;

last_name amount

1 Buffet 1500

2 Cathy 1200

3 Winfrey ' 500

_images/open_tab.png

_images/or_statement.png
SELECT * FROM contributors WHERE state = 'GA' OR amount > 1q00;

id

last_name

Buffet

first_name

Warren

city state

zip

Omaha Nebraska 68101

Chambers | Anne Cox Atlanta | GA

Cathy

S. Truett

Atlanta | GA

30301

30301

amount

1500

200

1200

_images/save_sql_window.png
00e

P e —

[—

<[> a8 1 Desictop. B Q search
— 15 AP baciup
cy-stte-uricue.sal

O Couddive g o J
1A Applications orro-o-scl s

8 paci .
Ll @ palo_sot compin.notes
5 Documents

& Programminginurmaism
savesalwindow
Stedat-dow. n-subsetsh

B B st-polce-inc..-kidnap.csv

B o

© Downloads

software-instals.sn

Devicss.

(] Hide extension | New Folder

_images/select_contributors_candidates_names.png
EFSTAENEN

SELECT contributors.last_name,
contributors.first_name,
candidates.last_name

FROM contributors, candidates

WHERE contributors.candidate_i

candidates.id{

last_name first_name last_name

Agee Steven Huckabee
Ahrens Don Huckabee
Ahrens Don Huckabee

Anrens Don Huckabee

_images/order_by_multiple.png
1

SELECT last_name, state, amount FROM contributors ORDER BY state, amount DESC;

3

4

last_name state amount
Cathy GA 1200
Chambers | GA 200
Winfrey IL 500
Buffet Nebraska 1500

_images/save_sql_button.png

_images/select_distinct.png
E @
v
x SQL1

1 SELECT DISTINC11 city, state FROM contributors;

city state
1 Omaha Nebraska
2 Chicago | IL
3 Atlanta GA

_static/part1/delete_temp_table.png
Name

v || Tables (3)

» || contrikrttarn

> || sqlite]

Indices ((
& Views (0)
L| Triggers

|| Browse Table
|1 Modify Table
|2 Delete Table

[Copy Create statement
Export as CSV file

Type

_images/select_distinct_lname.png
1 SELECT DISTINCT last_name, city, state FROM contributors;

last_name city state

1 Buffet Omaha Nebraska
2 Winfrey Chicago | IL
3 Chambers | Atlanta | GA

4 Cathy Atlanta | GA

_static/part1/execute_sql_button.png

_static/part1/execute_sql.png
3 New Database &+ Open Database =] Write Changes ‘z Revert Changes

Database Structure Browse Data Edit Pragmas Execute SQL

s B B » M

_static/part1/new_database.png
New Database

_static/part1/first_and.png
1 SELECT * FROM contributors WHERE state = 'GA' AND amount > 1000;

id last_name first_name city state zip amount

1 4 Cathy S. Truett Atlanta GA 30301 1200

_static/part1/and_or_sans_parens.png
SELECT * FROM contributors WHERE city = 'Chicago’ OR state = 'GA' AND amount > 1000}

1
id last_name first_name city state zip amount

1 2 | Winfrey | Oprah Chicago | IL 60601 500

2 4 Cathy S. Truett Atlanta GA 30301 1200

_static/appendix/state_contrib_pct_hardcoded.png
OV h WN =

SELECT
state,

((sum(amount) * 1.0) / (select sum(amount) from contributors)) * 100
FROM contributors
GROUP BY state;

state amount) * 1.0) / (select sum(amount) from contributors)

AL 1.98849015112525
AR | 0.467880035558883
AZ | 2.19903616712675

CA | 17.274130912834

_static/part1/buffet_by_id.png
1 SELECT * FROM contributors WHERE id = 1}

id last_name first_name city state zip amount

1 1 Buffet Warren Omaha NE | 68101 1500

_static/part1/browse_data.png
Database Structure Edit Pragmas Execute SQL

Table: [|=| contributors 28 New Record Delete Record

id last_name first_name city state zip amount

Filter Filter Filter Filter Filter Filter Filter

11 Buffet Warren Omaha Nebraska 68101 1500

_static/part1/create_table.png
[JOX) Edit table definition
Table

contributors

¥ Advanced

Fields
QAdd field QRemove field = Move field up Move field down
Name Type Not PK Al u Default Check
id INTEGER [-
last_name TEXT n I 0O O C
first_name TEXT n 0O O C
city TEXT BooocC
state TEXT BooocC
Zip TEXT BooocC
amount INTEGER | B BN B BN |
1 CREATE TABLE "contributors ™ (
2 “id® INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
3 “last_name” TEXT,
4 “first_name " TEXT,
5 “city® TEXT,
6 “state” TEXT,
7 zip® TEXT,
8 “amount™ INTEGER
9);

Cancel

_static/part1/city_state.png
= [
v
x SQL1

1 SELECT city, state FROM contributors;

city state
1 Omaha Nebraska
2 Chicago | IL
3 Atlanta GA
4 Atlanta GA

_images/alabama.png
1 SELECT * FROM contributors WHERE state = 'AL']

id last.name first_name city state 2ip amount

110 Varley Alyson birmingham AL 35242 25

2 52 Coker Ed Edwardsvile AL 362610128 2100

_images/amount_by_city_state.png
[N

SELECT city, state, SUM(amount)

FROM contributors

GROUP BY city, state]

city
Alamogordo
Atlanta
Austin

Bastrop

state

NM

GA

X
X

SUM(amount)
1000

1900
3300
250

_images/88x31.png

_images/amount_by_state.png
SELECT state, SUM(amount)
FROM contributors
GROUP BY state]

state SUM(amount)

AL

AR

AZ

CA

co

2125
500
2350
18460
2100

_images/sql_new_open_save_tab.png

_images/start_window.png
3 New Database

/i Create Table

&+ Open Database

(o Create Index

[=] Write Changes

Database Structure Browse Data

5| Modify Table =" Delete Table

& Revert Changes

Edit Pragmas

Execute SQL

DB Browser for SQLite

Name

Modify Table

T Schema

(x) =] Edit Database Cell
Mode: Text S Import Export Set as NULL
Type of data currently in cell: NULL
Apply
0 byte(s)
0 @ SQL Log
Show SQL submitted by =~ Application Clear
1
<jejl Lo Plot DB Schema Remote

UTF-8
vy

_images/select_ga.png
1 select * from contributors WHERE state = 'GA' ;

id lastname firstname city state zip amount

1 3 Chambers Anne Cox Atlanta GA 30301 200

2 48 Dermer Jeffrey D. Atlanta GA 303097662 500

_images/select_substr.png
SELECT SUBSTR(zip, 1, 5) FROM contributors;

SUBSTR(zip, 1, 5)
60601

30301
30301
20012
07417
02563
22192

07417

_images/state_contrib_pct_dynamic.png
v wN e

SELECT

state,

((sum(amount) * 1.0) / (select sum(amount) from contributors)) * 100
FROM contributors
GROUP BY state]

state 3mount) * 1.0) / (select sum(amount) from contributors)

AL 1.98849015112525
AR 0.467880035558883
AZ 2.19903616712675

CA 17.274130912834

_images/state_contrib_pct_hardcoded.png
lonswn

SELECT

state,

((sum(amount) * 1.0)) / 106865) * 10|
FROM contributors
GROUP BY state;

state ((sum(amount) *1.0) / 106865) * 100
AL 1.98849015112525

AR 0.467880035558883
AZ 2.19903616712675

CA 17.274130912834

_images/state_after_update.png
1 SELECT DISTINCT state FROM contributors;

state

3 GA

_images/state_column.png
SELECT state FROM contributors;|

1 | Nebraska

_images/subquery_max.png
1 SELECT * FROM contributors WHERE amount = (SELECT MAX(amount) FROM contributors);

id lastname firstname city state 2ip amount

173 Offerdahl Richard E. Incline Village NV 894527899 2400

_static/appendix/save_sql_button.png

_static/appendix/open_tab.png

_static/appendix/sql_new_open_save_tab.png

_static/appendix/save_sql_window.png
00e

P e —

[—

<[> a8 1 Desictop. B Q search
— 15 AP baciup
cy-stte-uricue.sal

O Couddive g o J
1A Applications orro-o-scl s

8 paci .
Ll @ palo_sot compin.notes
5 Documents

& Programminginurmaism
savesalwindow
Stedat-dow. n-subsetsh

B B st-polce-inc..-kidnap.csv

B o

© Downloads

software-instals.sn

Devicss.

(] Hide extension | New Folder

_images/select_distinct_state_normal.png
SELECT DISTINCT state FROM contributors;

state

GA
DC
NJ
MA
VA

_images/warning_aggregate_where.png
misuse of aggregate: SUM(: SELECT city, state, SUM(amount)
FROM contributors

WHERE SUM(amount) >= 3000

‘GROUP BY city, state

‘ORDER BY SUM(amount) DESC;

_images/where_clause1.png
B & » M

v o

-

SELECT * FROM contributors WHERE state = 'GA';|

id last_name first_name city state zip amount

3 Chambers Anne Cox | Atlanta | GA 30301 200

4 | Cathy S. Truett | Atlanta GA | 30301 1200

_images/table_and_column_after_creation.png
New Database &+ Open Database = Write Changes -?, Revert Changes

Database Structure Browse Data Edit Pragmas Execute SQL

1_3 Create Table "z Create Index 2 =)
Name Type Schema
v || Tables (2)
v || contributors CREATE TABLE "contributors™ (“id" INTEGER NOT NULL PRIMARY KEY
@ id INTEGER “id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT
[=] last_name TEXT “last_name" TEXT
[=] first_name TEXT “first_name™ TEXT
(=) city TEXT “city” TEXT
[state TEXT “state” TEXT
(= zip TEXT “zip® TEXT
[—] amount INTEGER “amount” INTEGER
» || sqlite_sequence CREATE TABLE sqlite_sequence(name,seq)
> Indices (0)
& Views (0)

L| Triggers (0)

_images/top_15_contributors.png
0

n

2

3

i

s

SELECT * FROM CONTRIBUTORS ORDER BY amourt DESC LIMIT 15]

73
15
.

19

a

6
57
103
10
2
2
2

Offerdan
Welch
Welch
Trammell
Homme!
Geisick
Hul
Davis
Weymer
Weymer
Oden
Verster
Golobek
Golobek

Cutter

firstname

Richard E.
Mark
Sheia
JoelT.
JasonE.
Shanna
Robert .
Jeremy s.
Richard A.
Jean Dea

Ray P.

Jeanette M.

Donald.
Mona

Kerry €

ey
Incine Vilage
Golumbia Falls
Columbia Fals
Austin

Penn Valley
Penn Valley
Grafton
Houston
George West
George West
Shreveport
Miami
Wellsboro
Wellsboro

Sacramento

™
™
™
"
L

PA
PA

2
804527899

599120206
599120206
787351500
959469705
959469705
032403439
770252267
780223587
780223587
061826

31431807

169011837

169011837

958643013

2400
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2100
2100

_images/where_plus_having.png
SELECT city, state, SUM(amount)
FROM contributors

WHERE amount > = 2300
GROUP BY iy, state

HAVING SUM(amount > 4000}

RN

city state SUM(amount)

1 Columbia Falls | MT | 4600

2 George West | TX | 4600

3 PennValley | CA | 4600

_images/write_changes_button.png
£ Write Changes

_images/where_gt_2300.png
@ o

SELECT city, state, amount

FROM contributors
WHERE amount >= 2300;

city amount

state
Columbia Falls | MT | 2300
MT

Columbia Falls 2300

Austin % |2300

PennValley | CA |2300

Penn Valley

g

2300

_images/where_gt_2300_with_group.png
SELECT city, state, SUM(amount)
FROM contributors
WHERE amount > = 2300
ROUP BY cy, state;

FNFRNEN

city state SUM(amount)

1 Austin @ |2300

Columbia Falls | MT | 4600

o

George West | TX | 4600

4 Grafton NH | 2300

5 Houston @ |2300

_static/part2/amount_by_city_state.png
[N

SELECT city, state, SUM(amount)

FROM contributors

GROUP BY city, state]

city
Alamogordo
Atlanta
Austin

Bastrop

state

NM

GA

X
X

SUM(amount)
1000

1900
3300
250

_static/part2/avg_amt.png
1 SELECT AVG(amount) FROM contributors;

AVG(amount)

1 1037.52427184466

_static/part2/amount_by_state.png
SELECT state, SUM(amount)
FROM contributors
GROUP BY state]

state SUM(amount)

AL

AR

AZ

CA

co

2125
500
2350
18460
2100

_static/part2/avg_contrib_hardcoded_count.png
1 select sum(amouny * 1.0 / 103
2 from contributors;
3

sum(amount) * 1.0/ 103

1 1037.52427184466

_static/part2/avg_contrib_dynamic_count.png
1 select sum(amoun) * 1.0/ count(")
2 from contributors;

sum(amount) * 1.0/ count(*)

1 1037.52427184466

_static/part2/between.png
SELECT * FROM contributors WHERE amount BETWEEN 500 AND 1000

v

2

2
2

Gstrome featrame
wintcey Opran

see Avin.
Young craig
Shudick JonL.

Baumgardner David

EY
cricago
Southwick
Ky
NFtMyors

Welington

MA

1%

L
i

0

60501
ow0770844
786400099
3307

790954836

500
500
500
500
1000

_static/part2/avg_non_decimal.png
SELECT sum(amount] / 103
FROM contributors;

sum(amount) * 1.0/ 103

1 1037.52427184466

_static/part1/where_clause1.png
B & » M

v o

-

SELECT * FROM contributors WHERE state = 'GA';|

id last_name first_name city state zip amount

3 Chambers Anne Cox | Atlanta | GA 30301 200

4 | Cathy S. Truett | Atlanta GA | 30301 1200

_static/part1/table_and_column_after_creation.png
New Database &+ Open Database = Write Changes -?, Revert Changes

Database Structure Browse Data Edit Pragmas Execute SQL

1_3 Create Table "z Create Index 2 =)
Name Type Schema
v || Tables (2)
v || contributors CREATE TABLE "contributors™ (“id" INTEGER NOT NULL PRIMARY KEY
@ id INTEGER “id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT
[=] last_name TEXT “last_name" TEXT
[=] first_name TEXT “first_name™ TEXT
(=) city TEXT “city” TEXT
[state TEXT “state” TEXT
(= zip TEXT “zip® TEXT
[—] amount INTEGER “amount” INTEGER
» || sqlite_sequence CREATE TABLE sqlite_sequence(name,seq)
> Indices (0)
& Views (0)

L| Triggers (0)

_static/part2/alabama.png
1 SELECT * FROM contributors WHERE state = 'AL']

id last.name first_name city state 2ip amount

110 Varley Alyson birmingham AL 35242 25

2 52 Coker Ed Edwardsvile AL 362610128 2100

_static/part1/write_changes_button.png
£ Write Changes

_images/sum_ga.png
1 SELECT SUM(amount) FROM contributors WHERE state = 'GA'{

SUM(amount)

11900

_images/sum_top_20.png
SELECT SUM(amount)
FROM contributors

IWHERE id IN (
‘T SELECT id FROM contributors ORDER BY amount DESC LIMIT 20
%

SUM(amount)

1 44500

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/part1/select_distinct.png
E @
v
x SQL1

1 SELECT DISTINC11 city, state FROM contributors;

city state
1 Omaha Nebraska
2 Chicago | IL
3 Atlanta GA

_static/part1/order_by_multiple.png
1

SELECT last_name, state, amount FROM contributors ORDER BY state, amount DESC;

3

4

last_name state amount
Cathy GA 1200
Chambers | GA 200
Winfrey IL 500
Buffet Nebraska 1500

_static/part1/start_window.png
3 New Database

/i Create Table

&+ Open Database

(o Create Index

[=] Write Changes

Database Structure Browse Data

5| Modify Table =" Delete Table

& Revert Changes

Edit Pragmas

Execute SQL

DB Browser for SQLite

Name

Modify Table

T Schema

(x) =] Edit Database Cell
Mode: Text S Import Export Set as NULL
Type of data currently in cell: NULL
Apply
0 byte(s)
0 @ SQL Log
Show SQL submitted by =~ Application Clear
1
<jejl Lo Plot DB Schema Remote

UTF-8
vy

_static/part1/select_distinct_lname.png
1 SELECT DISTINCT last_name, city, state FROM contributors;

last_name city state

1 Buffet Omaha Nebraska
2 Winfrey Chicago | IL
3 Chambers | Atlanta | GA

4 Cathy Atlanta | GA

_static/part1/state_column.png
SELECT state FROM contributors;|

1 | Nebraska

_static/part1/state_after_update.png
1 SELECT DISTINCT state FROM contributors;

state

3 GA

_static/part1/open_import_wizard.png
DB Browser for SQLite |78 Edit View Help
>

] & New Database... #EN))
M Inbo> | ® Open Database... s0 | Date | G sqlite |) sqlit | (o X
« 1000 &% Open Database Read Only... n/Desktop/padij/day5/gentle-intro-tc
. Attach Database
i Ap @ LpNewbDatabase Close Database BW
06
|73 Create Table | Compact Database Mo
£ Set Encryption
plame) #5 Load extension r
v || Tables |

Database from SQL file...
> [= salitt Export Table from CSV file...

< Indices T
[® Views (((& Open Project
[Triggert % Qave Proiect

_static/part1/new_table.png
[Jcreate Tavle

_static/part1/order_by.png
SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount;

3

last_name amount
Winfrey | 500
Cathy 1200

Buffet

1500

_static/part1/or_statement.png
SELECT * FROM contributors WHERE state = 'GA' OR amount > 1q00;

id

last_name

Buffet

first_name

Warren

city state

zip

Omaha Nebraska 68101

Chambers | Anne Cox Atlanta | GA

Cathy

S. Truett

Atlanta | GA

30301

30301

amount

1500

200

1200

_static/part1/order_by_desc.png
1 SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount DESC;

last_name amount

1 Buffet 1500

2 Cathy 1200

3 Winfrey ' 500

_images/zip_LIKE.png
il SELECT zip FROM contributors WHERE zip LIKE '77566%';

zip
1 775661497

2 775666036

_static/ajax-loader.gif

_images/write_changes_button1.png
£ Write Changes

_images/avg_contrib_dynamic_count.png
1 select sum(amoun) * 1.0/ count(")
2 from contributors;

sum(amount) * 1.0/ count(*)

1 1037.52427184466

_images/avg_contrib_hardcoded_count.png
1 select sum(amouny * 1.0 / 103
2 from contributors;
3

sum(amount) * 1.0/ 103

1 1037.52427184466

_images/and_or_sans_parens.png
SELECT * FROM contributors WHERE city = 'Chicago’ OR state = 'GA' AND amount > 1000}

1
id last_name first_name city state zip amount

1 2 | Winfrey | Oprah Chicago | IL 60601 500

2 4 Cathy S. Truett Atlanta GA 30301 1200

_images/avg_amt.png
1 SELECT AVG(amount) FROM contributors;

AVG(amount)

1 1037.52427184466

_images/browse_candidates.png
Table: candidates B -]

10
"
2
3
14
15
1
7

“ frst_name lastrame middle_rame
Fiter ier Fiter Fiter
1 ™ Huckabeo

20 Barack Obama

2 Rudolon Gulani

2 Mice Gravel

2 Jobn Edwards

2 8l Rehardson

30 Duncan Hnter

3 Dernis Kucnicn

32 Ron paul

B Joseoh siden

3 Hilary Cinton [
35 Mie Romney

36 Samuel Brownback

5 John MeCain

3 Tom Tancredo

3 Chestopher Dodd .

a Fred Thompson o.

Fiter

party

_images/browse_contributors.png
Table: | | contributors

B &

i fast_name frstname middle_name
Fiter Fiter Fiter Fiter

1 Agee Steven

2 2 Arvens Don

3 3 Arvens Don

4 4 Arvens Don

s s A Crares

. e

[y

6

seet_1

549 Laurel Bran..

4034 Rennellwo...

4034 Rennellwo,

4034 Rennellwo,

10187 Sugar Cr..

181 Bavwood L

Fiter

street 2

New Record

city
Fiter

Floyd
Pleasanton
Pleasanton
Pleasanton
Bentonville

‘Morticallo

Filter

VA

cA

"

Delete Record

state

Fiter
24091
94566
94566
94566
nn2
Ty

_images/avg_non_decimal.png
SELECT sum(amount] / 103
FROM contributors;

sum(amount) * 1.0/ 103

1 1037.52427184466

_images/between.png
SELECT * FROM contributors WHERE amount BETWEEN 500 AND 1000

v

2

2
2

Gstrome featrame
wintcey Opran

see Avin.
Young craig
Shudick JonL.

Baumgardner David

EY
cricago
Southwick
Ky
NFtMyors

Welington

MA

1%

L
i

0

60501
ow0770844
786400099
3307

790954836

500
500
500
500
1000

_images/browse_data.png
Database Structure Edit Pragmas Execute SQL

Table: [|=| contributors 28 New Record Delete Record

id last_name first_name city state zip amount

Filter Filter Filter Filter Filter Filter Filter

11 Buffet Warren Omaha Nebraska 68101 1500

_images/buffet_by_id.png
1 SELECT * FROM contributors WHERE id = 1}

id last_name first_name city state zip amount

1 1 Buffet Warren Omaha NE | 68101 1500

_images/city_state.png
= [
v
x SQL1

1 SELECT city, state FROM contributors;

city state
1 Omaha Nebraska
2 Chicago | IL
3 Atlanta GA
4 Atlanta GA

nav.xhtml

 Table of Contents

 		
 A Gentle Introduction to SQL Using SQLite

 		
 Part I

 		
 Hello SQL!

 		
 Installing DB Browser for SQLite

 		
 Creating the First Database

 		
 Creating a Table

 		
 Inserting Data

 		
 Querying Data

 		
 Using DISTINCT to get a distinct set

 		
 The WHERE Clause

 		
 Combining conditions with AND and OR

 		
 Sorting results with ORDER BY

 		
 Changing values with UPDATE

 		
 Deleting data

 		
 Further References

 		
 Part II

 		
 Getting started

 		
 Nothing can come of nothing: Using IS NULL

 		
 IS NOT NULL

 		
 Knowing your limitations: Using LIMIT

 		
 Casting a wider net with LIKE

 		
 Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER()

 		
 SUBSTR()

 		
 TRIM()

 		
 UPPER() and LOWER()

 		
 Pull yourself together: The concatenate operator (||)

 		
 Pick One: Using BETWEEN and IN (NOT IN)

 		
 Aggregate Functions: COUNT, MAX, MIN, SUM, AVG

 		
 COUNT()

 		
 MIN() and MAX()

 		
 SUM()

 		
 AVG()

 		
 Beyond functions: Custom calculations

 		
 Subqueries, the Russian dolls of SQL

 		
 GROUP BY

 		
 HAVING

 		
 Revisiting subqueries

 		
 A word of caution

 		
 Conclusion

 		
 Part III

 		
 Spreading the data around: Data Normalization

 		
 Referentially speaking: Associating tables using foreign keys

 		
 Reaching across the aisle using JOIN

 		
 Using Aliases

 		
 Explicit JOIN syntax

 		
 OUTER JOIN

 		
 Why be normal? Denormalization as an informed choice.

 		
 Conclusion

 		
 Further Resources

 		
 Appendix

 		
 Importing data from a file

 		
 Saving scripts

_images/contributors_sample.png
L] contributors.txt -
d|last_name|first_name|city|state|zip|amount
5|Helen| |Washington|DC|200122649|15
6|Vespa|Anthony |Franklin Lakes|NJ|074172831|50
7|Cohen|Jared |Sandwich |MA|02563 |50

_images/count_ca.png
SELECT COUNT(id) FROM contributors WHERE state = 'CA';

_images/city_state_by_amount_desc.png
EENEREIN

SELECT city, state, SUM(amount)
FROM contributors

GROUP BY city, state

ORDER BY SUM(amount) DESC;

city state SUM(amount)
Columbia Falls MT 4600
George West TX 4600
Penn Valley CA 4600

Downey CA 4200

_images/concat_city_state.png
SELECT city ||, || state FROM contributors ORDER BY state, city

city ") Il state

Edwardsville, AL
birmingham, AL
Bryant, AR
Mesa,AZ
Tubac,AZ

Beverly Hills, CA

_images/distinct_zip.png
1 SELECT COUNT(DISTINCT zip) FROM contributors;

COUNT(DISTINCT zip)
192

_images/error_aggregate.png
id lastname firstname city state zip amount

misuse of aggregate function MAX(: SELECT * FROM contributors WHERE amount = MAX(amount);

_images/create_table.png
[JOX) Edit table definition
Table

contributors

¥ Advanced

Fields
QAdd field QRemove field = Move field up Move field down
Name Type Not PK Al u Default Check
id INTEGER [-
last_name TEXT n I 0O O C
first_name TEXT n 0O O C
city TEXT BooocC
state TEXT BooocC
Zip TEXT BooocC
amount INTEGER | B BN B BN |
1 CREATE TABLE "contributors ™ (
2 “id® INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
3 “last_name” TEXT,
4 “first_name " TEXT,
5 “city® TEXT,
6 “state” TEXT,
7 zip® TEXT,
8 “amount™ INTEGER
9);

Cancel

_images/distinct_state_space.png
SELECT DISTINCT state FROM contributors;

state

L

GA

GA
bc

_images/execute_sql.png
3 New Database &+ Open Database =] Write Changes ‘z Revert Changes

Database Structure Browse Data Edit Pragmas Execute SQL

s B B » M

_images/execute_sql_button.png

_images/first_and.png
1 SELECT * FROM contributors WHERE state = 'GA' AND amount > 1000;

id last_name first_name city state zip amount

1 4 Cathy S. Truett Atlanta GA 30301 1200

_images/having_amount_greater.png
SELECT city, state, SUM(amount)

ERESENN

FROM contributors

GROUP BY ciy, state

HAVING SUM(@mount) >= 3000
ORDER BY SUM(amount) DESC;

city state SUM(amount)
Columbia Falls | MT | 4600

George West | TX | 4600

Penn Valley

2

4800

Downey

2

4200

San Antonio | FL | 4200

Wellsboro | PA | 4200

Westfield NJ | 4200

Houston Tx | 3850

Austin X | 3300

_images/import_confirmation.png
= Thereisaiready a table of that name. Do you
° /' wanttoimport the data into it?

_images/group_by_join.png
SELECT b.id, b.last_name, count(a.id)
FROM contributors a
JOIN candidates b ON a.candidate_id = b.id

ENEEIN

16

20

22

32

34

35

37

GROUP BY b.id, b.last_name;

last_name count(a.id)

Huckabee 25

Obama 25
Gidliani 25
Paul 25
Clinton 25
Romney 25
McCain 25

_images/group_by_left_outer_join.png
o UAWN

SELECT candidates.id,
candidates.last_name,
count(contributors.id)
FROM candidates
LEFT OUTER JOIN contributors ON candidates.id = contributors.candidate_id
GROUP BY candidates.id, candidates.last_name;

id last_.name count(contributors.id)

16 | Huckabee | 25

20 | Obama 25

22 | Giuliani 25

24 | Gravel 0

26 | Edwards 0

29 | Richardson | O

30 | Hunter 0

_images/in.png
id

10
2

a3

SELECT * FROM contributors WHERE state IN (AL, ‘GA', FL);

Jastname
Chambers
cathy
Variey
Shudick

Teasley

frstname
Anne Cox
S. Truett
Alyson
JonL.

Hary E.

city
Atlanta

Atianta

\gham
NFtMyers

Tampa

state
GA
G
A
L

L

2p
30301
30301
35242
33017

336112814

amount.

200
1200
2
500
1000

_images/is_not_null.png
SELECT * FROM contributors WHERE state = 'VA' AND last_name IS NOT NULL;

w N

id lastname firstname city state 2ip amount
18 Albrecht Robert woodbridge VA 22192 10

2 102 Lewis DonaldS. Virg;

Beach VA 234513838 250

_images/import_contributors.png
"4 Import CSV file

Table name contributors|

Column names in first line
Field separator |

Quote character

Encoding UTF-8

Trim fields?

id last_name
15 Helen
2 6 Vespa
37 Cohen
4 8 Albrecht
5 9 Vespa
6 10 Varley

first_name city

Washington ~ DC

Anthony Frankiin Lakes NJ
Jared Sandwich MA
Robert woodbridge VA
Anthony Frankiin Lakes NJ
Allyson birmingham AL

state

zip

200122649
074172831
02563
22192
074172831

35242

Cancel

15
50
50
10
n

25

amount

_images/import_contributors1.png
"8 Import CSV file

Table name [contrbutors

Column names in first line

Field separator |

Quote character

Encoding UTF-8

Trim fields?

o last_name
1l |1 Agee

2 2 Anrens
33 Anrens
a4 Ahrens
5|5 Akin

6 6 Akin

first_name

Steven
Don
Don
Don
Charles

Mike

middle_name

street 1

549 Laurel 8...
4034 Rennel...
4034 Rennel...

4034 Rennel...

10187 Sugar

181 Baywoo...

street2

Cancel

city
Floyd

Pleasanton
Pleasanton
Pleasanton
Bentonville

Monticello

_images/lewis_or_null.png
N

id
8

54

SELECT * FROM contributors
WHERE state = 'VA' AND (last_name != 'Lewis’ OR last_name IS NULL)]

last_name _first_name city state zip amount

Albrecht Robert woodbridge VA 22192 10

Rocky Mount VA 24151 500

_images/like_initial.png
10

SELECT * FROM contributors WHERE first_name LIKE %

7

8

19

20

24

25

28

29

30

31

last_name

See
Taylor
Trammell
Whitfield
Cutter
Miller
Howard
Shudlick
Furber

Furber

first_name

Alvin B,
Richard D.
Joel T.
George R.
Kerry E.
James R
Patrick G.
JonL.
Donna P.

James E.

oty
Southwick
Shreveport
Austin

Seoul Kore
Sacramento
Burtonsville
Concord

N Ft Myers
Downey

Downey

state

MA

LA

™

2z

ca

MD

NH

FL

ca

ca

2ip
010770444

711013114

787351509

11070

958643013

208661043

033022219

33917

902402634

902402634

amount

500

250

2300

1600

2100

2100

2100

500

2100

2100

_images/last_name_NULL.png
w

1

id
54

SELECT * FROM contributors WHERE last_name IS NULL;

last_name first_name

city state zip amount

Rocky Mount VA 24151 500

_images/new_table.png
[Jcreate Tavle

_images/not_lewis.png
1 SELECT * FROM contributors WHERE state = 'VA' AND last_name != 'Lewis’;

id lastname first name city state zip amount

18 Albrecht Robert woodbridge VA 22192 10

_images/max_amount.png
1 SELECT MAX(amount) FROM contributors]

MAX(amount)

1 2400

_images/new_database.png
New Database

_images/open_sql_file_button.png

_images/one_plus_two.png

_images/open_db_button.png
4 Open Database

