
A Gentle Introduction to SQL
Documentation

Release 0.0.1

Troy Thibodeaux and Serdar Tumgoren

Nov 05, 2019





Contents

1 Part I 3
1.1 Hello SQL! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Installing DB Browser for SQLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Creating the First Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Creating a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Inserting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Querying Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Using DISTINCT to get a distinct set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 The WHERE Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Combining conditions with AND and OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 Sorting results with ORDER BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 Changing values with UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.12 Deleting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13 Further References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Part II 21
2.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Nothing can come of nothing: Using IS NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Knowing your limitations: Using LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Casting a wider net with LIKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER() . . . . . . . . . . . . . . . . . . . 27
2.6 Pull yourself together: The concatenate operator (||) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Pick One: Using BETWEEN and IN (NOT IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Aggregate Functions: COUNT, MAX, MIN, SUM, AVG . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Beyond functions: Custom calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Subqueries, the Russian dolls of SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11 GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12 HAVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Revisiting subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Part III 45
3.1 Spreading the data around: Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Referentially speaking: Associating tables using foreign keys . . . . . . . . . . . . . . . . . . . . . 47
3.3 Reaching across the aisle using JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Explicit JOIN syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 OUTER JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



3.6 Why be normal? Denormalization as an informed choice. . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Further Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Appendix 57
4.1 Importing data from a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Saving scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Indices and tables 61

ii



A Gentle Introduction to SQL Documentation, Release 0.0.1

This tutorial was crafted by Troy Thibodeaux as a human-friendly introduction to the world of databases and SQL.
It introduces database skills from the ground up using SQLite and a small set of data from the world of campaign
finance.

This tutorial largely hews to Troy’s original SQL-Tutorial, but updates the material to work with DB
Browser for SQLite. Source code for this tutorial lives on Github.

Contents 1

https://github.com/tthibo
https://github.com/tthibo/SQL-Tutorial
https://github.com/zstumgoren/gentle-intro-to-sql


A Gentle Introduction to SQL Documentation, Release 0.0.1

2 Contents



CHAPTER 1

Part I

1.1 Hello SQL!

SQL or Structured Query language is the language used to communicate with relational databases. What are relational
databases? Well, most of the popular database systems you may know, such as MS Access, MySQL or SQLite, are all
relational. That is, they all use a relational model, which, it turns out, can be described much like a spreadsheet:

• Data are organized into tables (relations) that represent a collection of similar objects (e.g. contributors).

• The columns of the table represent the attributes that members of the collection share (last name, home address,
amount of contribution).

• Each row in the table represents an individual member of the collection (one contributor).

• And the values in the row represent the attributes of that individual (Smith, 1228 Laurel St., $250).

Much of the power of a relational database lies in the ability to query these relations, both within a table (give me all
contributors who donated at least $500 and who live in Wyoming) and among tables (from the contributors, judges
and litigants tables, give me all contributors who donated at least $1000 to Judge Crawford and who also had legal
cases over which Judge Crawford presided). SQL is the powerful and rather minimalist language we use to ask such
questions of our data in a relational database. How minimalist is SQL? The basic vocabulary for querying data comes
down to a few main verbs:

SELECT
INSERT
UPDATE
DELETE

I imagine you can guess what each of those verbs does, even if you’ve never written a database query.
To create and change the structure of tables in the database, there are a few other verbs to use:

3



A Gentle Introduction to SQL Documentation, Release 0.0.1

CREATE
DROP
ALTER

Those are the keywords that perform almost everything you need to do. The language also includes a number of
modifiers that help specify the action of the verbs, but the core list comes down to a couple dozen words. These basic
keywords are common across pretty much all relational databases. A specific database management system (Access,
MySQL or SQLite) may add its own extensions to the common keywords, but the lion’s share of the work is done
with this handful of words, and they’re basically the same across database applications.

By combining these simple keywords, you can create remarkably complex and specific queries. And the basic syntax
still reads fairly clearly:

SELECT last_name FROM contributors WHERE state = 'WY';

The SQL query above reads pretty much like the English sentence for the same request:

Select the last name from the contributors table where the contributor's state is WY.

If you’re using a graphical interface such as a datagrid, that interface is simply constructing queries like these behind
the scenes. So, why not take command of your queries and write them yourself?

A couple of things off the bat:

• SQL keywords are not case-sensitive. So capitalizing SELECT in the statement above is optional. Using all
caps for keywords is considered good form, though, because it helps distinguish keywords from table names or
other non-keywords.

• The statement ends with a semi-colon. This is the standard way of ending a statement in SQL. Some systems
enforce this convention.

So, let’s dive in. For this tutorial, we will be using SQLite, a free and open source database manager that’s lightweight
and portable.

1.2 Installing DB Browser for SQLite

To create our own databases, we’ll use the free and open source DB Browser for SQLite. Per their documentation:

DB Browser for SQLite is a high quality, visual, open source tool to create, design, and edit database files
compatible with SQLite. It is for users and developers wanting to create databases, search, and edit data.
It uses a familiar spreadsheet-like interface, and you don’t need to learn complicated SQL commands.

4 Chapter 1. Part I

https://sqlitebrowser.org/


A Gentle Introduction to SQL Documentation, Release 0.0.1

Go to this page, download the installer appropriate for your machine, and execute the installer.

Once finished, search for the program and fire it up.

On a Mac, you can hit Command + Space bar and type your search to find the program, or search in Launchpad.

1.3 Creating the First Database

Mousing over each of the icons at the top of the DB Browser tool will show what the icon does.

To create a database, simply click on the icon for “New Database”:

Name the database “contributors” and save it anywhere you like (the desktop will work, or your documents folder).
This single file will contain the entire database you create.

Note: As you do work in DB Browser, be aware that it will not automatically save your work. If you plan
to step away from the tutorial, be sure to save your changes by clicking the “Write Changes” button:

You can also save SQL queries as individual scripts.

1.4 Creating a Table

Click the “Create Table” icon ( ), and you’ll get a form allowing you to create a new table.

1.3. Creating the First Database 5

https://sqlitebrowser.org/dl/


A Gentle Introduction to SQL Documentation, Release 0.0.1

To create a table, we have to define the attributes or columns that make it up. For each column, we define the datatype
of the data it will contain.

Name the table “contributors” and begin creating columns as below by clicking the “Add field” button.

Note: You should name and order the fields AND fill in the drop-down menu and checkboxes exactly as dis-
played!

Important notes

6 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

Some important things to note:

• As you start adding fields and options, note how the table creation SQL in the bottom pane dynamically updates.

• The id field will be a unique identifier for each contributor (and therefore will be the “Primary Key” for the
row), which is why we checked the PK box for this one field. Checking the AI box will make this integer
automatically increment for each row we add (so each new row will have a new id). Finally, this field should
not be null or empty (because we need it as the unique identifier), so we check the Not box as well.

• The next five columns will all contain text strings of undetermined lengths (last names, for example, come in all
kinds of lengths), so we’ll use the TEXT datatype, which allows for text of varying length.

By the way, it may seem strange that the zip column uses a TEXT datatype, but remember that some zips start with a
0 (00501 is in NY). So, we want to treat this column as a string of text, rather than as a number (which would be 501).

Click OK and DB Browser will create the table based on your specifications, by executing the full SQL statement in
the lower pane of the table creation window:

CREATE TABLE `contributors` (
`id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
`last_name` TEXT,
`first_name` TEXT,
`city` TEXT,
`state` TEXT,
`zip` TEXT,
`amount` INTEGER

);

The syntax should be fairly clear, since it just reflects the choices we made in the form. It’s creating a table called
“contributors” with the fields and data types we’ve defined.

You should now have a “contributors” table in the list in the Database Structure panel of the manager. Clicking the
arrow beside the listing for “contributors” will show you the column list for the table.

1.4. Creating a Table 7



A Gentle Introduction to SQL Documentation, Release 0.0.1

1.5 Inserting Data

Now that we have a table in the database, we can start inserting data. This task is accomplished with (oddly enough)
an INSERT statement.

Click the “Execute SQL” tab in the second menu row, under the icons for creating/opening databases:

The top pane with the flashing cursor is where you can write SQL queries. Since we don’t have data in the table yet,
let’s go ahead and insert some by copying and pasting the below SQL into the pane with the flashing cursor.

INSERT INTO contributors (last_name, first_name, city, state, zip, amount)
VALUES ('Buffet', 'Warren', 'Omaha', 'Nebraska', '68101', 1500);

This is a little more obscure than the CREATE or SELECT syntax, but it’s still fairly clear. To insert a row in the table,
we execute the INSERT INTO statement with a table name, a list of columns to populate, and the VALUES for each
of those columns. The order of the columns in the column list must match the order of values in the values list.

It’s very important to surround text values with single quotation marks. Two things to note:

• The quotation marks indicate to SQL that this is a literal string (the word ‘Buffet’), rather than a column name
or other special usage.

• SQL uses single quotation marks around text strings. Some database systems will also accept double quotes,
but some will throw an error.

• The commas between values are placed outside of the quote marks, not inside.

Notice that we didn’t insert a value for id. Because we set that column to AUTOINCREMENT, SQLite will populate
the id with the next integer in the sequence. So, we don’t need to worry about choosing unique ids; SQLite takes care
of it.

Finally, we didn’t include dollar signs or commas in the “amount” column. We created the “amount” column as an
integer, so we should only insert integers there. (Different database management systems will react differently if you
try to insert non-numeric characters in an integer column; it’s best to avoid doing so.)

If you haven’t done so already, click the Execute SQL button .

The bottom pane should say “Query executed successfully” followed by a copy of the SQL that was executed. Success!
You’ve added data!

You can view the data by going to the “Browse Data” tab:

8 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

Just so we’ll have some data to play with, let’s execute a few more INSERT statements. Go back to the “Execute
SQL” tab and paste in these lines:

INSERT INTO contributors (last_name, first_name, city, state, zip, amount) VALUES (
→˓'Winfrey', 'Oprah', 'Chicago', 'IL', '60601', 500);
INSERT INTO contributors (last_name, first_name, city, state, zip, amount) VALUES (
→˓'Chambers', 'Anne Cox', 'Atlanta', 'GA', '30301', 200);
INSERT INTO contributors (last_name, first_name, city, state, zip, amount) VALUES (
→˓'Cathy', 'S. Truett', 'Atlanta', 'GA', '30301', 1200);

You can paste all three lines into the SQL text box at the same time. The semi-colons indicate the end of each
statement.

Before inserting these new records, you should delete the original INSERT statement to avoid re-running
it, which would result in a duplicate record.

Click the “Execute SQL” button.

You can view the new records in the “Browse Data” tab. You should see 4 rows in total now.

1.6 Querying Data

Now that we have a small data set to use, let’s start querying it by using the SELECT statement.

Navigate to the “Execute SQL” panel and type the following into the SQL text box:

SELECT * FROM contributors;

Now click the “Execute SQL” button.

You should see a nice grid display of all contributors you’ve added. The * character is a common wildcard. In this
SELECT statement, it is used to retrieve all columns. So, we have selected all columns from all rows in the contributors
table.

To define which columns of data you want to return, simply provide a comma-separated list of column names to
SELECT:

SELECT city, state FROM contributors;

Clicking “Execute SQL” should give you a two-column table of cities and states.

1.6. Querying Data 9



A Gentle Introduction to SQL Documentation, Release 0.0.1

1.7 Using DISTINCT to get a distinct set

The SELECT query above gives us a list of cities and states, but it includes duplicate rows for Atlanta, GA. Adding
DISTINCT to the query eliminates the duplicates:

SELECT DISTINCT city, state FROM contributors;

10 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

Now you should have only three rows in your results, showing the unique combinations for city and state in the table.

Notice what happens if you add the last_name field to the DISTINCT query:

SELECT DISTINCT last_name, city, state FROM contributors;

1.7. Using DISTINCT to get a distinct set 11



A Gentle Introduction to SQL Documentation, Release 0.0.1

We’re back to four rows. There are four distinct combinations of last_name, city and state in the table, so that’s what
we get from DISTINCT.

1.8 The WHERE Clause

The WHERE clause provides the scalpel for your SQL operations. A well-crafted WHERE clause can let you take
exactly the slice of the data you want. It sets the conditions for the SELECT, and the query will return only those rows
that match the conditions.

Say, for example, we only wanted to see contributors from Georgia:

SELECT * FROM contributors WHERE state='GA';

Remember the single quotes around the string “GA”

12 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

And you can test for more than equality in the WHERE clause. This query finds only the contributors who have donated
more than $1200:

SELECT * FROM contributors WHERE amount > 1200;

Of course, donors who have given exactly $1200 won’t be included in the results. To include them, use the >= operator:

SELECT * FROM contributors WHERE amount >= 1200;

Here are some other operators you can use:

operator description
= Equal
!= Not equal*
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal

* Many database systems also use <> for “Not equal”

1.9 Combining conditions with AND and OR

You can combine conditions using AND and OR. For example, let’s find all contributors from Georgia who have given
more than $1000:

SELECT * FROM contributors WHERE state = 'GA' AND amount > 1000;

1.9. Combining conditions with AND and OR 13



A Gentle Introduction to SQL Documentation, Release 0.0.1

Now let’s find all contributors who either live in Georgia or who have given more than $1000:

SELECT * FROM contributors WHERE state = 'GA' OR amount > 1000;

And now let’s try to get the big spenders from Chicago and Georgia:

SELECT * FROM contributors WHERE city = 'Chicago' OR state = 'GA' AND amount > 1000;

14 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

Hmm . . . Oprah is in the list, but she only donated $500. What gives?

The problem here is that the AND operator has a higher precedence than the OR operator, which means it gets evaluated
first. So, in effect, our query really looks like this:

SELECT * FROM contributors WHERE city = 'Chicago' OR (state = 'GA' AND amount > 1000);

Which selects all contributors from Chicago and only those contributors from Georgia who have also donated more
than $1000.

We can use parentheses to clarify the original query and actually get the high rollers we wanted:

SELECT * FROM contributors WHERE (city = 'Chicago' OR state = 'GA') AND amount > 1000;

Parentheses are often helpful when you need to disambiguate a query. Technically, you’re changing the order of
evaluation here, but you’re also just making the intention of your statement clear.

1.10 Sorting results with ORDER BY

To order your result set by the values in a particular column, use ORDER BY:

SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount;

1.10. Sorting results with ORDER BY 15



A Gentle Introduction to SQL Documentation, Release 0.0.1

Only the rows matching the WHERE clause are returned (i.e. only those with an amount exceeding $200).

The default direction for ORDER BY is ascending; results are ordered from smallest amount to greatest.

To specify the direction of the sorting, use the DESC or ASC keyword:

SELECT last_name, amount FROM contributors WHERE amount > 200 ORDER BY amount DESC;

You can also order the results by more than one column. Rows with the same value for the first column of the ORDER
BY are further ordered by the additional column(s):

SELECT last_name, state, amount FROM contributors ORDER BY state, amount DESC;

16 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

Here we get the list of contributors ordered by state and then ordered by the amount, from highest to lowest amount
within the state, of their contribution. This is one quick way to see who has contributed the most in each state.

1.11 Changing values with UPDATE

Now we have some basic skills for creating tables, inserting data into the table and querying the data we’ve inserted.
But what about changing the values in existing rows? To change the value of existing rows, we use the UPDATE
statement.

One thing that just looks wrong with our data set is that value “Nebraska” in the state column:

SELECT state FROM contributors;

1.11. Changing values with UPDATE 17



A Gentle Introduction to SQL Documentation, Release 0.0.1

That should be the postal abbreviation, like the other rows. To change that value, we need to use UPDATE to set a new
value for the column. But we want to make sure we don’t blow away the state values in our other columns.

If we just used UPDATE contributors SET state = 'NE'; - DON’T EXECUTE THIS!! - we would end
up replacing the state value in every row with “NE”. Not exactly what we want.

So, we have to define a WHERE clause to determine which rows will be changed by the UPDATE:

UPDATE contributors SET state = 'NE' WHERE state = 'Nebraska';

Ok, let’s see how the state list looks:

SELECT DISTINCT state FROM contributors;

18 Chapter 1. Part I



A Gentle Introduction to SQL Documentation, Release 0.0.1

Now that’s more like it.

1.12 Deleting data

The remaining keyword from the original list is DELETE, which unsurprisingly deletes rows from the table. As when
using UPDATE, it’s important to specify a WHERE clause with DELETE. Running DELETE without a WHERE
clause will blow away your precious data and can seriously ruin your day.

Before executing a DELETE or UPDATE, it’s always a good idea to run a SELECT with the same WHERE clause,
just to see which rows your changes will affect.

So, let’s get rid of one of our rows. How about deleting Warren Buffet?

For our WHERE clause, we could match on any column or combination of columns, but if we know the PRIMARY
KEY value of the row, that’s our safest bet. Because it’s a unique identifier, we can be certain we’re not accidentally
deleting other rows. First let’s make sure we have the row we want:

SELECT * FROM contributors WHERE id = 1;

1.12. Deleting data 19



A Gentle Introduction to SQL Documentation, Release 0.0.1

Looks like the one we want, so let’s delete it:

DELETE FROM contributors WHERE id = 1;

Notice that we don’t need to specify columns or use * with DELETE, since we’re deleting the entire row.

Now the row should be gone:

SELECT * FROM contributors;

Finally, you should save the database changes you’ve made so you don’t lose your work. You can save the changes by
clicking the “Write Changes” button:

1.13 Further References

http://www.w3schools.com/sql/sql_intro.asp
http://www.firstsql.com/tutor.htm
https://hackr.io/tutorials/learn-sql

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

20 Chapter 1. Part I

http://www.w3schools.com/sql/sql_intro.asp
http://www.firstsql.com/tutor.htm
https://hackr.io/tutorials/learn-sql
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


CHAPTER 2

Part II

Now that we have some dirty data and a few keywords, we can start to write some more interesting queries. In the
process, we’ll learn a few of the idiosyncrasies of SQL.

2.1 Getting started

For this section, we’ll use a pre-packaged database containing 103 rows of FEC data, with some light modifcations for
the purposes of learning.

• Download contributors.db

• Fire up DB Browser if you don’t already have it open

• Click “Open Database”:

• Navigate to the “contributors.db” and open it

Now you’re ready to dive deeper into SQL’s features for querying and manipulating data, starting with how to handle
null values.

2.2 Nothing can come of nothing: Using IS NULL

Let’s take a look back at our original CREATE statement for the contributors table:

CREATE TABLE `contributors` (
`id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
`last_name` TEXT,
`first_name` TEXT,
`city` TEXT,
`state` TEXT,
`zip` TEXT,

(continues on next page)

21



A Gentle Introduction to SQL Documentation, Release 0.0.1

(continued from previous page)

`amount` INTEGER
);

Notice that we defined the id column as NOT NULL, which meant that it was a required field. Because that field is
serving as our unique identifier or PRIMARY KEY for the row, it can’t be empty.

The keyword NULL is a special value in SQL. It’s a placeholder for an empty field. If a field is NULL, it’s really
empty. That means it’s not 0. It’s not an empty string (“”). If you’re of a philosophical mind, you might call NULL the
“nothing that is”. If you’re of a pragmatic mind, you might just think of it as a placeholder where no value has been
entered.

But being nothing (or a placeholder for an empty value) comes with a cost. NULL can’t be compared with other data
types such as strings. And we can’t use normal operators to match it, either. So =, != and friends don’t work with
NULL. Don’t believe me? Try it out:

SELECT * FROM contributors WHERE last_name = NULL;

Instead, to query for null values, we use the keywords IS NULL:

SELECT * FROM contributors WHERE last_name IS NULL;

NULL’s refusal to respond to normal operators can lead to some unforeseen effects. Take a look at this query, and
guess what it should return:

SELECT * FROM contributors WHERE state = 'VA' AND last_name != 'Lewis';

(Remember that != means “is not equal.”)

There are three contributors from VA in the table:

• Robert Albrecht,

• Donald S. Lewis

• and someone from Rocky Mount whose name fields are empty. (Yes, the data did come in like this from the
FEC.)

You can see the list by using “Browse Data” and filtering the state field for “VA”, or by running this query:

SELECT * FROM contributors WHERE state = 'VA';.

So, the clause WHERE state = 'VA' AND last_name != 'Lewis' looks like it’s asking for all contribu-
tors from Virginia whose last name is not Lewis. And it looks like it should return both Albrecht and the Rocky Mount
contributor. But when we run it (cue “Price Is Right” sad horn sound), we only get Albrecht:

22 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

“Curiouser and curiouser,” you might say. This makes strict logical sense when we consider that the NULL data type
can’t be compared with any other data type, but really it does seem a bit of a pain (even to some of the SQL gurus).
The solution is to use IS NULL. Here’s one way to write the query to get the results we intended:

SELECT * FROM contributors WHERE state = 'VA' AND (last_name != 'Lewis' OR last_name
→˓IS NULL);

(The parentheses are optional here, but they do help express our intentions.)

And now we get the two expected result rows:

2.2.1 IS NOT NULL

The opposite of IS NULL is (drumroll) . . . IS NOT NULL. And it works pretty much as we’d expect:

SELECT * FROM contributors WHERE state = 'VA' AND last_name IS NOT NULL;

This negative form is pretty handy for filtering null values from the results set.

2.3 Knowing your limitations: Using LIMIT

So far, all of our queries have returned the full result set of rows matching the WHERE clause. But sometimes you
only want a subset of the results. Let’s use the LIMIT keyword to get the top 15 contributors by contribution.

2.3. Knowing your limitations: Using LIMIT 23



A Gentle Introduction to SQL Documentation, Release 0.0.1

First we order the results by amount (in descending order), and then we limit the results to only the first 15 rows:

SELECT * FROM CONTRIBUTORS ORDER BY amount DESC LIMIT 15;

And if there aren’t enough matching rows to reach the specified limit, the limit is simply ignored:

SELECT * FROM contributors WHERE amount > 2100 LIMIT 15;

2.4 Casting a wider net with LIKE

While it’s helpful to be able to write queries that look for equality (last_name = ‘Smith’) or inequality (last_name !=
‘Smith’), sometimes you want to do something a little messier, such as looking for everyone whose last name starts
with ‘T’. Or maybe you want to look for matches to a five-digit ZIP code, but some of your rows use ZIP+4. For these
kinds of expressions, you can use the LIKE operator, which will perform a partial match.

A brief aside worth mentioning: The LIKE operator is case-insensitive for English letters, so a query for
“SMITH” or “smith” would both match the name “Smith.”

To perform a partial match using LIKE, you can combine normal characters and special wildcard characters to con-
struct a pattern. For example, the percent sign (%) will match any sequence of zero or more characters. So to match
any zip that begins with 77566, we can use this statement:

SELECT zip FROM contributors WHERE zip LIKE '77566%';

24 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

Notice that it matches both 775661497 and 77566036. It would also match 77566, because the % will match zero
characters, too.

The % is probably the most common special character used in pattern matching with LIKE. Another less commonly
used pattern matcher is the underscore (“_”), which matches any single character in the string.

Say, for example, we wanted to start cleaning our data, and we wanted to remove the middle initials from the first_name
field and put them into a new middle_name column. (This sort of thing can get tricky very quickly, but for now we’ll
trip along happily assuming everything goes smoothly.)

As a first step, we want simply to examine all of the rows that appear to contain middle initials in first_name. Here’s a
query that will get us at least part of the way there:

SELECT * FROM contributors WHERE first_name LIKE '% _.';

Reading patterns like this one may prove a little tricky at first, but in time . . . who am I kidding, it’s still pretty tricky,
but you can figure it out. Let’s break it down:

• The pattern starts with %, which we know means “match any series of zero or more characters,” which is pretty
much anything.

• Next we have a space. It’s hard to see, but it’s between the % and the underscore ( _ ). So we’re matching
anything plus a space.

• Then we have the magic underscore ( _ ), meaning any single character.

• And finally, we have a period (.), which is just a literal period here.

And here’s the result (you should get 60 rows, but we’ve truncated the results here):

2.4. Casting a wider net with LIKE 25



A Gentle Introduction to SQL Documentation, Release 0.0.1

So, in English, the pattern says to match “any series of characters followed by a space, a single character, and a period.”

This pattern will match things like:

• “John Q.”

• “1234 5.”

• “#$%^ !.”

• ” B.”

• “J. B.”

It won’t, however, match the string “J. Quincy” because the period isn’t the last character in the field. Neither will it
match “Alfred E. ” because we’ve left a space after the period.

To also match patterns that contain characters after the period, we would need to add a final % to the pattern:

SELECT * FROM contributors WHERE first_name LIKE '% _.%';

Now we’re matching the pattern “any series of zero or more characters, followed by a space, followed by a single
character, followed by a period, followed by any series of zero or more characters.” (So, our little pattern expresses a
pretty complex thought.)

Of course, we could just match any first_name that contains a period, like this:

SELECT * FROM contributors WHERE first_name LIKE '%.%';

But then we also get names like “S. Truett,” which may or may not be what we intended.

Note: Some database systems include other wildcard characters to be used in patterns. For example,
in some systems the pattern [xyz] will match one of the characters “x,” “y” or “z.” And the pattern
[^xyz] will match any character that is not an “x,” “y” or “z. SQLite does not, by default, support this
wildcard.

26 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

2.5 Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER()

Using LIKE for partial matches can be pretty powerful, but as we’ve seen, patterns aren’t exactly beach reading.
Another way to do partial matching is to use string functions to manipulate the values. String functions usually take
the form of a keyword followed by parentheses. The parentheses contain any arguments we want to pass to the
function. The general format looks like this: KEYWORD (ARG1, ARG2, ARG3). Usually the first argument is the
string we want to manipulate. Here are some commonly used string functions:

2.5.1 SUBSTR()

The SUBSTR() function takes the string we hand it in the parentheses and returns a part of the string that we define
(ergo, substring).

As we’ll see with other string functions, this string argument can be - and typically is - the name of a column in a
table. This gives us the power to manipulate all the values for a given column (or perhaps a limited subset).

To determine which part of the string to return, SUBSTR() accepts a few additional arguments beyond the field that
we’re targeting:

• the starting point of the desired substring (counting characters from the left)

• the number of characters to grab from that starting point

The full function call takes this form: SUBSTR (STRING, START_POINT, LENGTH). The third argument is
optional. If we leave it off, SUBSTR() returns all characters from the given starting point to the end of the string.

An example is probably more helpful. So, here is the ZIP query from earlier, rewritten to use a substring match in the
WHERE clause of the query:

SELECT zip FROM contributors WHERE SUBSTR(zip, 1, 5) = '77566';

Above, we’re asking for all ZIP codes in the table whose first five characters match ‘77566’. This query will return the
same result set we saw earlier: 775661497 and 77566036.

Functions can also be used in the SELECT clause of the query, so we can do something like this:

SELECT SUBSTR(zip, 1, 5) FROM contributors;

Now we’re getting the five-digit representation of all ZIPs in the table (and dropping the extra four digits from the
ZIP+4s):

2.5. Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER() 27



A Gentle Introduction to SQL Documentation, Release 0.0.1

2.5.2 TRIM()

The TRIM() function is most frequently used to trim white space from either side of a string. During data entry,
strings are often accidentally inserted with leading or trailing whitespace. To simulate this case, let’s mess up the data
even more:

UPDATE contributors SET state = ' GA ' WHERE last_name = 'Cathy';

Now try selecting all rows where the state field is equal to ‘GA’ (with no extra surrounding spaces around the state
postal):

select * from contributors WHERE state = 'GA';

So, now Cathy isn’t appearing in our list of Georgians. Even worse, we’ve created a new state:

28 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

SELECT DISTINCT state FROM contributors;

We can use TRIM() to clean things up:

UPDATE contributors SET state = TRIM(state);

Notice here that we’re not using a WHERE clause on the UPDATE statement. This means that all rows will be updated,
which is usually not what you want at all. Consider if we had used SET state = 'GA' in the statement above;
we’d now have a table full of Georgians and a mess to clean up. Because we’re using a function, rather than a literal
string here, we can update everything at once, trimming the white space from the front and end of every state value.
The function operates on the value in the state column for each row in turn.

And now we’re back to normal:

SELECT DISTINCT state FROM contributors;

The TRIM() function can also be used to strip characters other than spaces from the front and end of a string,
although this usage is probably less common. To tell TRIM() which characters to remove, pass a second argument
which contains any characters to be removed. For example, TRIM (state, '.,') would remove any periods or
commas appearing at the beginning or end of the state name (i.e. “GA.” would become “GA”).

2.5. Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER() 29



A Gentle Introduction to SQL Documentation, Release 0.0.1

2.5.3 UPPER() and LOWER()

Another common problem in dirty data is inconsistencies in capitalization. For example, let’s find all of the contribu-
tors from Birmingham, Alabama:

SELECT * FROM contributors WHERE state = 'AL' AND city = 'Birmingham';

Hmm . . . apparently there aren’t any.

But when we check on all contributors from Alabama, we get a different story:

SELECT * FROM contributors WHERE state = 'AL';

So, the problem is that Birmingham isn’t properly capitalized. Now, we could do a SELECT using city =
'birmingham', but then we’d miss any rows that properly capitalize the city name. And what about rows that
use ALL CAPS?

An easy way to get around these issues of case-sensitivity is to use the UPPER() or LOWER() string functions to
standardize capitalization on the values:

SELECT * from contributors WHERE UPPER(city) = 'BIRMINGHAM';

The UPPER() function translates each letter in the city value to upper case.

Note that we are not changing the values in this column to upper-case. Instead, we’re dynamically modify-
ing the values in our WHERE clause purely for the purposes of matching records in a select query, leaving
the original values unchanged.

As a result, this query will give us the lower-case version, but it will also match “Birmingham” and “BIRMINGHAM”
(not to mention “BIRMingham”), as they will all be rendered as “BIRMINGHAM” by UPPER().

Note: By default LIKE is not case-sensitive in SQLite, but that is not true of all database management
systems. Also, in some other database systems, such as MySQL, the basic equality operator (=) is case
insensitive, but that’s not true in SQLite, and it isn’t true in other systems. When in doubt, it’s safer to use
LOWER() or UPPER() to ensure case insensitivity. (Also, some databases use UCASE() and LCASE()
rather than UPPER() and LOWER().)

2.6 Pull yourself together: The concatenate operator (||)

Sometimes we want to combine values from different columns, either in the WHERE clause or for the results. SQLite
uses double-pipes ( || ) - more formally known as the concatenation operator - to combine strings. You can combine
both literal strings (in quotation marks) and column values using this operator.

Say, for instance, we want a nicely formatted list of cities and states for contributors. To create a single result column
that contains the city and state separated by a comma, we can use this query:

30 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

SELECT city || ',' || state FROM contributors ORDER BY state, city;

We insert the comma and space as a literal string concatenated with the values from the city and state columns.

Note: Some other database management systems, such as MySQL use the CONCAT() func-
tion to perform concatenation. For example, SELECT CONCAT (city, ', ', state) FROM
contributors; will not work in SQLite.

2.7 Pick One: Using BETWEEN and IN (NOT IN)

Often you’ll want to get a value from within a range. The BETWEEN operator can do exactly that. Let’s see which of
our contributors has given between 500 and 1000 dollars:

SELECT * FROM contributors WHERE amount BETWEEN 500 AND 1000;

Note: This query returns the same results as SELECT * FROM contributors WHERE amount
>= 500 AND amount <= 1000; — but it’s much more readable.

At other times, you may need to match values from within a set of choices. This is where the IN operator comes in
handy. Let’s find all contributors from a few southern states:

SELECT * FROM contributors WHERE state IN ('AL', 'GA', 'FL');

The choices are surrounded by parentheses and separated by commas. And don’t forget the quote marks around literal
strings. here’s the result:

2.7. Pick One: Using BETWEEN and IN (NOT IN) 31



A Gentle Introduction to SQL Documentation, Release 0.0.1

Again, you could have used a compound statement with state = 'AL' OR state = 'GA' OR
state = 'FL' to achieve the same result, but the IN syntax makes things much clearer, and it’s easier
to write.

You can also use NOT IN to find results where a value is not included in the given set:

SELECT * FROM contributors WHERE state NOT IN ('CA', 'OR', 'AZ');

But beware that NOT IN won’t work with null fields. So, if one of the rows has a null value for state, it would not be
returned by the query above.

2.8 Aggregate Functions: COUNT, MAX, MIN, SUM, AVG

Aggregate functions allow us to perform calculations on values across rows. Using them, we can start to do some
pretty interesting data analysis. To specify a column to use for the aggregate, pass the column name as the argument
in parentheses: e.g. COUNT (counted_column). Here’s a quick run through some useful aggregate functions:

2.8.1 COUNT()

How many contributors do we have from California?

SELECT COUNT(id) FROM contributors WHERE state = 'CA';

The COUNT(id) function counts the number of unique ids. We could also have used COUNT(*), which will count
the number of rows. The result will be the same.

COUNT() can also be used with DISTINCT to return the number of distinct instances. For example, how many
distinct ZIP Codes are there in the table?

SELECT COUNT(DISTINCT zip) FROM contributors;

Note that the the DISTINCT keyword comes inside the parentheses. It is part of the argument passed to COUNT().

32 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

2.8.2 MIN() and MAX()

What is the maximum amount that any of our contributors has given?

SELECT MAX(amount) FROM contributors;

2.8.3 SUM()

What is the total amount of contributions from Georgia?

SELECT SUM(amount) FROM contributors WHERE state = 'GA';

2.8.4 AVG()

What is the average amount contributed?

SELECT AVG(amount) FROM contributors;

2.8. Aggregate Functions: COUNT, MAX, MIN, SUM, AVG 33



A Gentle Introduction to SQL Documentation, Release 0.0.1

Of course, the usual caveats about using averages apply. I heard a nice example recently: “Which major at UNC
produces graduates with the highest average salary?” Apparently, it was Geography - Michael Jordan’s major. Even if
it isn’t true, it’s a nice warning about the way outliers can skew averages.

2.9 Beyond functions: Custom calculations

We’ve learned about many of the built-in functions that SQL provides for manipulating strings and summarizing data
with aggregates. But what if SQL doesn’t provide a ready-made function for the task at hand?

Fortunately, SQL supports the ability to perform ad hoc calculations in the SELECT clause1.

Here’s a really basic example:

select 1 + 2

Simple, though not very useful. Things get more interesting when you start performing calculations on data.

Say that we wanted to know the average contribution amount for the entire data set.

We’ll pretend for now that we don’t already know about the built-in AVG function.

You can find that number by summing up all contributions and dividing by the total number of contributions:

SELECT sum(amount) * 1.0 / 103
FROM contributors;

1 Custom calculations work in other clauses as well, such as in WHERE clauses. We focus on SELECT here because it’s one of the most common
use cases for custom calculations.

34 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

Note that above, we’ve multiplied the sum of contributions ( sum(amount) ) by 1.0. This forces the amount –
which is an integer – to be treated as a decimal.

Failing to do so will result in SQLite dropping the numbers after the decimal, causing you to lose precision that may
be important in a given query:

Also note that we can make this query more flexible by updating the calculation to use the built-in COUNT function,
instead of hard-coding the value.

SELECT sum(amount) * 1.0 / count(*)
FROM contributors;

2.9. Beyond functions: Custom calculations 35



A Gentle Introduction to SQL Documentation, Release 0.0.1

These examples are fairly simple, but hopefully they demonstrate SQL’s flexibility. Built-in functions are quite handy,
but there will likely come a time when you need a custom calculation - perhaps in combination with a built-in function
- to get the job done.

2.10 Subqueries, the Russian dolls of SQL

When doing analysis, we often want to base one query on the results of another query. For example, we used the
MAX() function to determine the maximum amount contributed. But what if we want to know who actually gave that
maximum amount? We could try something like this:

SELECT * FROM contributors WHERE amount = MAX(amount);

But we won’t like the results:

We could also simply run two different queries, one to get the maximum amount, and another to find rows matching
that amount:

SELECT MAX(amount) FROM contributors;

..which returns 2400.

SELECT * FROM contributors WHERE amount = 2400;

While that would work, it’s a little clunky and brittle: If the database is being updated often, we’d always have to run
the lookup for MAX() first, in case the maximum amount changed between queries.

Wouldn’t it be nice to be able to combine those two queries into one statement? Well, we’re in luck - a subquery is up
to that task:

SELECT * FROM contributors WHERE amount = (SELECT MAX(amount) FROM contributors);

The subquery appears in parentheses, and it stands in for the value we want to test against amount. The subquery is
executed first, and its result is used in the outer query. Because the subquery returns 2400, the query above gives the
same result as a query for amount = 2400.

This statement works because our subquery only returns a single value (the value of MAX(amount)). It’s also
possible to use a subquery that returns multiple results, but in that case, we can’t use the = operator.

If we wanted, for example, to get the total contributions from the top 20 contributors, we would have a list of 20 rows
we want to match against. That’s where our new friend IN comes to the rescue:

36 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

Note that we’re spreading the query across multiple lines since the query statement is starting to get long.
Formatting SQL statements in this way helps with readability as you start writing increasingly complex
queries.

SELECT SUM(amount)
FROM contributors
WHERE id IN (

SELECT id FROM contributors ORDER BY amount DESC LIMIT 20
);

The subquery returns the ids of the first 20 rows ordered by amount. The outer query asks for the sum of all amounts
where the unique identifier for our contributor is in the results of our subquery. When we put them together, we get
the sum of the amounts for the top 20 contributors:

Note that there are other contributors in the list who have also donated 2100 (the smallest amount in the top 20), so the
cut-off point is arbitrary. Depending on the story, we might want to do something more sophisticated with this query,
such as looking for the sum of all amounts less than 500, or something even more ambitious, such as looking for the
sum of all amounts within a certain percentile.

Subqueries can also be used with DELETE, UPDATE and INSERT statements.

2.11 GROUP BY

With some aggregate functions in our tool belt, we’re ready to take advantage of one of SQL’s more powerful features:
GROUP BY. The GROUP BY statement is used in conjunction with aggregate functions to group the results by a given
column. Doing so allows us to write queries that return counts, sums, averages, minimums and maximums per group.

For Excel users, this feature mirrors the functionality of PivotTables.

So, what is the total amount of contributions per state?

SELECT state, SUM(amount)
FROM contributors
GROUP BY state;

2.11. GROUP BY 37



A Gentle Introduction to SQL Documentation, Release 0.0.1

It’s also possible to group by a combination of columns. So, we can get totals by city and state, as well:

SELECT city, state, SUM(amount)
FROM contributors
GROUP BY city, state;

And we can use the aggregate function in an ORDER BY statement to sort the results by total amount:

SELECT city, state, SUM(amount)
FROM contributors
GROUP BY city, state
ORDER BY SUM(amount) DESC;

The syntax of this last statement is a little tricky. The columns to group by are separated by commas, but
there is no comma before ORDER BY or DESC.

38 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

Most relational database management systems require that every non-aggregate field in the SELECT statement also be
included in the GROUP BY statement1. Because SUM(amount) is an aggregate, we can include it in the SELECT
statement, even though it isn’t included in the GROUP BY list. But if we want to include city in the SELECT, we
should also include it in the GROUP BY as well.

2.12 HAVING

Now that we understand grouping and aggregates, let’s try filtering the results based on an aggregate. To start, let’s
find all cities for which contributions total more than $3,000. Here’s a first stab at the query:

SELECT city, state, SUM(amount)
FROM contributors
WHERE SUM(amount) >= 3000
GROUP BY city, state
ORDER BY SUM(amount) DESC;

And . . . no.

The error message isn’t very helpful, but you can see “misuse of aggregate: SUM()” is mentioned.

Turns out that aggregate functions can’t be used in a WHERE clause. The WHERE clause acts as a filter on each row in
turn, but here we want to test an expression against an aggregate value for a group of rows (SUM(amount)).

The equivalent of a WHERE clause for aggregates is HAVING. It appears after the GROUP BY:

SELECT city, state, SUM(amount)
FROM contributors
GROUP BY city, state
HAVING SUM(amount) >= 3000
ORDER BY SUM(amount) DESC;

1 SQLite doesn’t enforce this standard SQL restriction, which in some cases makes writing the query much simpler but in most cases can lead
to unexpected results. But as a general practice and to make your queries portable to other systems, you should always include all columns for the
SELECT in the GROUP BY list. If including that column in the GROUP BY isn’t possible, then you’ll probably need to use a subquery to create the
desired result.

2.12. HAVING 39



A Gentle Introduction to SQL Documentation, Release 0.0.1

To get a better sense of the difference between WHERE and HAVING, let’s first look at a fairly simple query using
WHERE:

SELECT city, state, amount
FROM contributors
WHERE amount >= 2300;

This query looks for individual contributors who have given at least $2,300, and it returns their city, state and amount.

40 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

Now let’s make this into an aggregate query by adding a GROUP BY and an aggregate function:

SELECT city, state, SUM(amount)
FROM contributors
WHERE amount >= 2300
GROUP BY city, state;

We have the same nine cities that we had in the first query (those cities in which someone donated at least $2,300). But
now, rather than having one row per contributor, we have one row per city. The GROUP BY eliminates the duplicate

2.12. HAVING 41



A Gentle Introduction to SQL Documentation, Release 0.0.1

entries for cities in which more than one person contributed at least $2,300. And by using the aggregate function for
SUM (amount), we’re adding up all contributions of at least $2,300 for each city.

Now let’s further filter this list of cities. We want to look only at cities in which these large contributions ($2,300 or
greater) made a big difference. Let’s call $4000 a big difference, for the sake of argument. So, we want only those
cities for which the total amount of contributions at this size exceeds $4000.

Looking at the results from the last query, we know to expect 3 rows, but it’s not always so easy to see.

Here goes:

SELECT city, state, SUM(amount)
FROM contributors
WHERE amount >= 2300
GROUP BY city, state
HAVING SUM(amount) > 4000;

And bam! We now have a list of cities where large contributions totaled more than $4000.

2.13 Revisiting subqueries

Before wrapping up Part II, let’s revisit subqueries.

Recall that subqueries are SQL queries nested inside of a larger SQL statement. They’re especially useful for dynam-
ically filtering results on the fly as part of the WHERE clause. As we saw earlier, subqueries let us base the results of
one query on the results of another, without having to run the queries separately.

But subqueries aren’t limited to use in the WHERE clause. Another powerful – and perhaps surprising – use of sub-
queries is in SELECT.

For example, say that you wanted to determine the percentage of all contributions that came from each state.

You could perform this operation with two separate queries, starting with a sum of all contributions:

select sum(amount) from contributors;

42 Chapter 2. Part II



A Gentle Introduction to SQL Documentation, Release 0.0.1

The above query gives us a total of $106,865.

Next, we can use GROUP BY to sum contributions by state, and divide those totals by the sum of all contributions that
we calculated above:

SELECT
state,
( (sum(amount) * 1.0 ) / 106865 ) * 100

FROM contributors
GROUP BY state;

This works, but wouldn’t it be nice if we could dynamically calculate the sum of all contributions, rather than hard-
code the total from the first query? That way, our calculation should “just work” if we add more contributions to the
database.

This is where the SELECT subquery can work its magic:

SELECT
state,
( (sum(amount) * 1.0 ) / (select sum(amount) from contributors) ) * 100

FROM contributors
GROUP BY state;

Above, we’ve simply replaced the hard-coded sum of all contributions with the query that generated the value. SQLite
will calculate this total once and use it to determine each state’s percentage of overall contributions.

Not too shabby. Subqueries in select statements can clearly be a powerful tool in your SQL skill set, especially when
combined with aggregates, GROUP BY and other SQL features we’ve covered in Part II.

2.13. Revisiting subqueries 43



A Gentle Introduction to SQL Documentation, Release 0.0.1

2.13.1 A word of caution

With this new power, of course, comes responsibility. As you begin writing increasingly complex queries, they will
become harder to read – not to mention debug.

Be cautious as you craft such queries, making sure to format the SQL in a readable way. Execute subsqueries inde-
pendently before dropping them into a larger SQL query, to ensure they’re performing as expected. And for especially
tricky syntax, add code comments to explain the logic.

2.14 Conclusion

So, now you can construct a vast array of query types in SQL. Using subqueries, aggregates and GROUP BY , you
should be able to ask nearly anything of a single data set that you need.

In the next part, we’ll move on to exploring relationships between data sets, and you’ll be able to amaze your friends
and colleagues with your raw SQL power.

See you in Part III.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

44 Chapter 2. Part II

https://www.w3schools.com/sql/sql_comments.asp
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


CHAPTER 3

Part III

3.1 Spreading the data around: Data Normalization

All of the queries we’ve run so far are limited to a single table. If all you ever do is import data from a spreadsheet,
then you could always limit your queries to a single table. But most data projects of any depth soon involve multiple
database tables.

Why would you want to separate the data into different tables? Well let’s think back for a moment to the description
of relational databases from Part I:

• Data is organized into tables (relations) that represent a collection of similar objects (e.g. contributors).

• The columns of the table represent the attributes that members of the collection share (last name, home address,
amount of contribution).

• Each row in the table represents an individual member of the collection (one contributor).

• And the values in the row represent the attributes of that individual (Smith, 1228 Laurel St., $250).

So, a table represents a set of similar objects, and the objects all share certain attributes. But we could stretch that
definition quite a bit: Contributors all have addresses, but they also have recipients (the candidates who received the
contributions). Should we include in our contributors table the candidate name, the campaign address and phone
number, the office sought, the state in which the candidate is running, etc? What about the campaign treasurer’s name?
Committee positions the candidate holds? Previous offices held?

Including all of this loosely related data in a single table takes us pretty far afield of the original relation (Contributor).
We would also be storing a lot of redundant data (all of the candidate data would be repeated for each contribution
to a candidate). As a result, it could become difficult to update the data. Changing a candidate’s address, for ex-
ample, would require a change to each row containing a contributor to that candidate. In addition, it would become
increasingly difficult to spot any data entry errors. Each misspelling of a candidate’s name would be like adding a
new candidate, and it would be easier to overlook the error amidst all the repeated data. Finally, all of this redundancy
means we’re taking up more disk space than needed. (This last isn’t as big a concern as it once was when disk space
was more expensive, but it can present problems.)

So, in order to help ensure data integrity, to keep tables logically coherent and to reduce disk usage, most database
designers implement some degree of data normalization. There are varying degrees of normalization, known as the

45

http://en.wikipedia.org/wiki/Data_integrity
http://databases.about.com/od/specificproducts/a/normalization.htm


A Gentle Introduction to SQL Documentation, Release 0.0.1

“normal forms,” but for practical purposes the goal is to remove repetition and to keep only clearly related data in the
same table.

So, let’s go back to our hypothetically bulky contributors table and do some minimal normalization. Let’s begin by
imagining a table that looks like this:

last
name

first
name

street city state zip amountdate candidate
last name

candidate
first name

can-
didate
party

Ahrens Don 4034 Ren-
nellwood
Way

Pleasan-
ton

CA 94566 250.00 2007-
05-16

Huckabee Mike R

Agee Steven 549 Laurel
Branch Road

Floyd VA 24091 500.00 2007-
06-30

Huckabee Mike R

Even with only two sample rows, it’s easy to see the redundancy here. Any place we see repetition has potential
for some normalization. Also, it’s fairly clear that the table really represents two different relations (contributors and
candidates). So, one approach to restructuring this data is to create contributors and candidates tables and separate
the data accordingly.

To get started, let’s create a fresh database. Start up DB Browser for SQLite and perform the following steps:

• Click the New Database button and create a database called contributors_candidates.

• Save it somewhere you can find it, such as the Desktop.

Next, we’ll create the candidates table. Here’s the SQL CREATE TABLE statement to execute:

CREATE TABLE "candidates" (
"id" INTEGER PRIMARY KEY NOT NULL,
"first_name" TEXT NOT NULL,
"last_name" TEXT NOT NULL,
"middle_name" TEXT,
"party" TEXT NOT NULL

);

This should all be old hat by now. We’re just creating a table for the candidates, including some basic information
(name and party), and adding a PRIMARY KEY, a unique identifier for each candidate.

Now, let’s add some data to that table. Download candidates.txt and import it using the File -> Import -> Table
from CSV file. . . menu (see Importing Data for more details).

• For the “Table name” field, the value should say candidates

• Make sure there’s a check mark in the “Column names in first line” box

• And set the “Field separator” value to Pipe (|).

• Click OK and when prompted, confirm that you want to import the data into the existing candidates table.

You should now have 17 rows in the candidates table:

46 Chapter 3. Part III



A Gentle Introduction to SQL Documentation, Release 0.0.1

So now, rather than having candidate data included with each row of the contributor data, we have one row for each
candidate. It’s a much cleaner data structure.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.2 Referentially speaking: Associating tables using foreign keys

So, now we have the candidates table, but we also have a problem. Now that we’ve moved the candidate data out of
the contributors table, how do we link contributors to their candidates? Without this link, we have no way of running
queries that give, for example, total contributions per candidate. To create this reference between the two tables, we’ll
need a common field that the two tables share. The standard way of setting up this relationship is to include the
Primary Key from the referenced table as a field in the referencing table. The new column in the referencing table
is known as a Foreign Key.

Simply creating this foreign key column in the referencing table would be enough to let us run queries across both
tables, but SQL also allows us to explicitly declare the foreign key and thus enforce this reference at the database level.

So, let’s create a new contributors table, but in addition to the data about the contributor, let’s add a candidate_id
field and let SQLite know that it is a foreign key referencing the id column in the candidates table:

CREATE TABLE "contributors" (
"id" INTEGER PRIMARY KEY NOT NULL,
"last_name" TEXT,
"first_name" TEXT,
"middle_name" TEXT,
"street_1" TEXT,

(continues on next page)

3.2. Referentially speaking: Associating tables using foreign keys 47

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://en.wikipedia.org/wiki/Foreign_key


A Gentle Introduction to SQL Documentation, Release 0.0.1

(continued from previous page)

"street_2" TEXT,
"city" TEXT,
"state" TEXT,
"zip" TEXT,
"amount" INTEGER,
"date" TEXT,
"candidate_id" INTEGER NOT NULL,
FOREIGN KEY(candidate_id) REFERENCES candidates(id)
);

Notice the last two lines of that CREATE statement. The penultimate line adds the candidate_id column, defines it
as an integer, and makes it a required field (it cannot be null). The final line defines candidate_id as a foreign key
referencing the id column in the candidates table.

Now SQLite will enforce this reference, and if we try to enter a row in the contributors table without a candidate_id
or using a candidate_id that doesn’t actually appear in the candidates table, we’ll get an error. In other words, every
contributor must now have a candidate, and that candidate must already exist in the candidates table.

Now let’s add some contributor data to the table. Download the text file at
contributors_with_candidate_id.txt and import it into the contributors table using the File ->
Import -> Table from CSV file. . . wizard:

• NOTE: You’ll have to set the table name to contributors. Otherwise, SQLite will create a new table called
contributors_with_candidate_id, based on the name of the text file.

• Make sure there’s a check mark in the “Column names in first line” box

• And set the “Field separator” value to Pipe (|).

• Click OK and when prompted, confirm that you want to import the data into the existing contributors table.

48 Chapter 3. Part III



A Gentle Introduction to SQL Documentation, Release 0.0.1

You should now have 175 rows in the contributors table1:

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.3 Reaching across the aisle using JOIN

One way to run a query that uses data from two different tables is to use a subquery.

For example, to find all of the contributors to Barack Obama, you can do something like this:

SELECT *
FROM contributors
WHERE candidate_id = (

SELECT id
FROM candidates
WHERE last_name = 'Obama' AND first_name = 'Barack'

);

This approach works fine as long as you’re simply looking up values in one table and using them in the conditions for
the WHERE clause. But often the queries you’ll want to run will need to treat the two tables as a combined data set.
A query that combines the data from two tables is known as a join on the tables. It is possible to do an implicit join
simply by defining the relationship between the two tables in the WHERE clause:

SELECT contributors.last_name,
contributors.first_name,
candidates.last_name

FROM contributors, candidates
WHERE contributors.candidate_id = candidates.id;

1 A quick aside about the text file: It contains a pre-populated id column, so we’ll have unique Primary Key values. For the candidates table,
we specified the id field in each row so that they would match the candidate_id values in this data. In a real project, we would probably use
autoincrementing values for the ids in the candidates table, and populating the candidate_id field in the contributors table with the appropriate
value would be a separate task.

3.3. Reaching across the aisle using JOIN 49

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


A Gentle Introduction to SQL Documentation, Release 0.0.1

Notice that we’re including both of the tables in the FROM clause. Also notice that we’re using a fully-qualified version
of the column names: contributors.last_name, candidates.last_name. We’re including the table name here because
last_name appears in both tables. So, just using last_name, as we usually would, would be ambiguous (the last name
of the contributor or the last name of the candidate?). Adding the table name and a dot (.) before the column name
disambiguates the column.

3.3.1 Using Aliases

Including the full table name with each column name can become a bit tedious. So, SQL allows you to define an alias
for the table. To do so, simply include the alias after the table name in the FROM clause. Then you can use that alias,
rather than the full table name, elsewhere in the query:

SELECT a.last_name, a.first_name, b.last_name
FROM contributors a, candidates b
WHERE a.candidate_id = b.id;

This query returns the same results as the one above, but it saves some typing by making “a” an alias for contributors
and “b” an alias for candidates. The alias can use any valid table name you like, but obviously shorter aliases will save
more typing, while longer ones may make the intention of the query easier to understand.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.4 Explicit JOIN syntax

In addition to the implicit join syntax, SQL includes an explicit JOIN keyword. So, we could write the earlier query
using this syntax instead:

SELECT contributors.last_name,
contributors.first_name,
candidates.last_name

FROM contributors
JOIN candidates ON contributors.candidate_id = candidates.id;

The query results should be the same as earlier, but using the JOIN keyword makes the intent of the query more
explicit.

50 Chapter 3. Part III

https://www.w3schools.com/sql/sql_alias.asp
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


A Gentle Introduction to SQL Documentation, Release 0.0.1

Aliases work with JOIN as well:

SELECT a.last_name,
a.first_name,
b.last_name

FROM contributors a
JOIN candidates b ON a.candidate_id = b.id;

Now let’s try something a bit more interesting:

SELECT b.id, b.last_name, count(a.id)
FROM contributors a
JOIN candidates b ON a.candidate_id = b.id
GROUP BY b.id, b.last_name;

Excellent! We now know that we have 25 contributors for each candidate. Very cool. But, hey, wait. Our list of
candidates seems to be coming up short. Let’s check it:

SELECT DISTINCT id, last_name FROM candidates;

The above query shows that we have 17 candidates total – in other words, the JOIN query is missing 10 candidates.
What going on here? SQLite has gone mad!

Actually, there’s a pretty sensible explanation for this result. We said earlier that performing the JOIN would return
the same results as the query with this clause: WHERE contributors.candidate_id = candidates.id.

What if a candidate has no contributors? Then that candidate is not returned by the query.

The JOIN acts just like the WHERE clause and filters out any rows that don’t match the condition defined. Joins
that return only rows in which there is a match in both tables are known as INNER JOINs. This is often exactly the
behavior you want from the join (ignore any rows from either table that don’t relate to a row in the other table). So
by default, the JOIN keyword executes an INNER JOIN. You can also explicitly request an INNER JOIN, just to
make things clearer:

SELECT b.id, b.last_name, count(a.id)
FROM contributors a

(continues on next page)

3.4. Explicit JOIN syntax 51

https://www.w3schools.com/sql/sql_join_inner.asp


A Gentle Introduction to SQL Documentation, Release 0.0.1

(continued from previous page)

INNER JOIN candidates b ON a.candidate_id = b.id
GROUP BY b.id, b.last_name;

The results will be the same.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.5 OUTER JOIN

But how do we get the full list of candidates along with the number of contributors for each, including those candidates
who have no contributors in our data set? SQL provides the “OUTER JOIN” syntax for doing just that. Outer joins are
typically defined by the table from which we want to include non-matching rows, and we do so by referring to where
that table appears in the JOIN statement.

• A LEFT OUTER JOIN includes all rows from the table on the left side of the statement and only matching
rows from the table on the right side of the statement.

• A RIGHT OUTER JOIN includes all rows from the table on the right side of the statement and only matching
rows from the left side of the statement.

• A FULL OUTER JOIN includes all rows from both tables.

Currently, SQLite only supports LEFT OUTER JOIN from the list above, but some other database management
systems support the other two types as well.

Note: It’s easy to perform a RIGHT OUTER JOIN in SQLite by simply reversing the order of tables and using a
LEFT OUTER JOIN. It’s also possible to do a FULL OUTER JOIN by combining LEFT OUTER JOINs using the
UNION keyword.

This all probably makes more sense in an example. Let’s rewrite the grouping query from earlier to include all
candidates:

SELECT candidates.id,
candidates.last_name,
count(contributors.id)

FROM candidates
LEFT OUTER JOIN contributors ON candidates.id = contributors.candidate_id
GROUP BY candidates.id, candidates.last_name;

(Aliases would work here as well, but I’ve used the full table names to make the relationships clearer.)

Notice the JOIN statement: candidates LEFT OUTER JOIN contributors. Because candidates is on the left side
of that statement, the result set will include all of the candidate rows, even those for which there are no matching
contributors:

52 Chapter 3. Part III

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.w3schools.com/sql/sql_union.asp


A Gentle Introduction to SQL Documentation, Release 0.0.1

Much better.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.6 Why be normal? Denormalization as an informed choice.

Looking at the candidates table, there is another column showing some repetition: party. Many database designers
would extract this column into its own table and then include a party_id foreign key in the candidates table. It might
be a good idea here to use that id rather than a text field; as it stands, if the data came in with “R,” “Republican” and
“GOP” all appearing in that column, we would have a real mess. If we had a parties table that included only “R,”
“D” and “I” (for independent), then we’d know we have a nonstandard value coming in when we tried to look up the
party_id for “GOP,” for example.

But normalization comes with a cost. Adding that parties table would mean that, any time we want to show candidate
name and party, we’d have to do a join. And if we wanted contributor, candidate, and party, we’d have a query with
two joins:

SELECT contributors.last_name,
candidates.last_name,
parties.name

(continues on next page)

3.6. Why be normal? Denormalization as an informed choice. 53

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


A Gentle Introduction to SQL Documentation, Release 0.0.1

(continued from previous page)

FROM contributors
JOIN candidates ON contributors.candidate_id = candidates.id
JOIN parties ON candidates.party_id = parties.id;

Doing multiple joins can become rather expensive in terms of memory, so often developers will create summary tables
from the output of a SELECT:

CREATE TABLE contributors_candidates AS
SELECT contributors.last_name,

candidates.last_name,
parties.name

FROM contributors
JOIN candidates ON contributors.candidate_id = candidates.id
JOIN parties ON candidates.party_id = parties.id;

But any changes to the contributors or candidates tables would immediately make this summary table out of date, so
you’d have to create a way to update the summary table with each change.

There is another approach: denormalization. That is, collapsing your normalized data into a single table. If you’re
interested, check out the blog post on codinghorror and the spirited debate in the comments. I’ll give Jeff Atwood the
final comment here: “As the old adage goes, normalize until it hurts, denormalize until it works.”

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.7 Conclusion

Congratulations! You now have a well-rounded set of SQL skills that can help you wrangle and analyze the most
ornery of datasets. SQL JOINs in particular will help you design well-structured databases and join to other data sets
in pursuit of more sophisticated analyses.

Below are some topics we have not yet covered that are worth exploring:

• The UNION operator, which allows you to combine results from multiple queries

• Database optimization using indexes

• Database views, which can be used to store complicated queries as a virtual table

Thanks for working through this tutorial! Please drop us a note on Github if you have thoughts on how the tutorial can
be improved.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.8 Further Resources

• http://www.dbbm.fiocruz.br/class/Lecture/d17/sql/jhoffman/sqltut.html

54 Chapter 3. Part III

http://www.codinghorror.com/blog/2008/07/maybe-normalizing-isnt-normal.html
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.tutorialspoint.com/sqlite/sqlite_unions_clause.htm
https://www.tutorialspoint.com/sqlite/sqlite_indexes.htm
https://www.tutorialspoint.com/sqlite/sqlite_views.htm
https://github.com/zstumgoren/gentle-intro-to-sql/issues
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dbbm.fiocruz.br/class/Lecture/d17/sql/jhoffman/sqltut.html


A Gentle Introduction to SQL Documentation, Release 0.0.1

• http://zetcode.com/databases/sqlitetutorial/

• http://www.sqlite.org/lang.html

• http://www.sqlite.org/lang_keywords.html

• http://www.sqlite.org/lang_expr.html

• http://www.sqlite.org/foreignkeys.html

• http://en.wikipedia.org/wiki/SQL

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

3.8. Further Resources 55

http://zetcode.com/databases/sqlitetutorial/
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang_keywords.html
http://www.sqlite.org/lang_expr.html
http://www.sqlite.org/foreignkeys.html
http://en.wikipedia.org/wiki/SQL
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


A Gentle Introduction to SQL Documentation, Release 0.0.1

56 Chapter 3. Part III



CHAPTER 4

Appendix

Some useful things that go beyond the more general realm of SQL.

4.1 Importing data from a file

One common task we all face in data management is importing a data set into the database. Often, we receive a file
in some other format such as MS Excel, CSV (comma-separated values) or tab-delimited and we want to get those
values into a database table in order to run SQL queries on them.

Each database management system handles importing values from a file a bit differently. DB Browser for SQLite
provides a nice interface for performing data imports from text files.

First, let’s grab a plain text file full of contributors from the FEC database. Download contributors.txt and
save it somewhere you can find it (your Desktop is a good place).

Check out the first few lines of the file below. Notice that this file is pipe-delimited (the columns are separated by the
| character).

I find this delimiter easy to use because it’s unlikely to appear within a value in the import data. But using comma or
tab characters to separate the values will work as well.

Now that we know what we’re importing, let’s try importing the data into the “contributors.db” we created in Part 1
of the tutorial.

• Fire up DB Browser

• Click “Open Database”

• Locate your “contributors.db” file and click OK

• Start up the import wizard by selecting File -> Import -> Table from CSV file...

57



A Gentle Introduction to SQL Documentation, Release 0.0.1

• Navigate to the “contributors.txt” file that you downloaded, and click Open.

The import wizard should appear, which you can use to define your import.

• Check the “Column names in first line” checkbox.

• Select the pipe(|) for “Field separator”

• Uncheck the “Trim fields?” checkbox

For everything else, you can keep the default selections.

Click OK and you should get a pop-up notifying you that a table of the same name (contributors) already exists, and
asking if you want to import the data into that table.

Click “Yes” and the data import should proceed.

You should now have 103 rows of data to play with (the newly imported 100 rows, plus the original three add during
the Inserting Data section).

The FEC data is dirty: there are missing fields, first names include middle names, there are weird values for some
columns. Play around with it using the SQL you know, and see what you can find out. If you get surprising results
from a query or are wondering how to do something, add a comment to the blog post.

58 Chapter 4. Appendix



A Gentle Introduction to SQL Documentation, Release 0.0.1

You should also save the database changes you’ve made so far so you don’t lose your work. You can save the changes
by clicking the “Write Changes” button:

4.2 Saving scripts

As you start writing more SQL, it’s helpful to work on each query in a separate SQL pane and to save your work as
reusable scripts.

DB Browser for SQLite offers a few handy features for this workflow, including the ability to save and re-open scripts.

If you navigate to the Execute SQL panel, you should see a series of buttons towards the upper left that look like this:

You can create new tabs for additional SQL queries by clicking the Open tab button ( ).

You can save the SQL in any tab using the Save SQL file button ( ). This will fire up a window that lets you
choose a location and name for your script.

Scripts should always have a .sql file extension, e.g. my-awesome-script.sql

Finally, you can re-open a saved script by clicking the Open SQL file button ( ).

4.2. Saving scripts 59



A Gentle Introduction to SQL Documentation, Release 0.0.1

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

60 Chapter 4. Appendix

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


CHAPTER 5

Indices and tables

• genindex

• modindex

• search

A Gentle Introduction to SQL Using SQLite by Troy Thibodeaux is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

61

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

	Part I
	Hello SQL!
	Installing DB Browser for SQLite
	Creating the First Database
	Creating a Table
	Inserting Data
	Querying Data
	Using DISTINCT to get a distinct set
	The WHERE Clause
	Combining conditions with AND and OR
	Sorting results with ORDER BY
	Changing values with UPDATE
	Deleting data
	Further References

	Part II
	Getting started
	Nothing can come of nothing: Using IS NULL
	Knowing your limitations: Using LIMIT
	Casting a wider net with LIKE
	Using string functions: SUBSTR(), TRIM(), UPPER(), LOWER()
	Pull yourself together: The concatenate operator (||)
	Pick One: Using BETWEEN and IN (NOT IN)
	Aggregate Functions: COUNT, MAX, MIN, SUM, AVG
	Beyond functions: Custom calculations
	Subqueries, the Russian dolls of SQL
	GROUP BY
	HAVING
	Revisiting subqueries
	Conclusion

	Part III
	Spreading the data around: Data Normalization
	Referentially speaking: Associating tables using foreign keys
	Reaching across the aisle using JOIN
	Explicit JOIN syntax
	OUTER JOIN
	Why be normal? Denormalization as an informed choice.
	Conclusion
	Further Resources

	Appendix
	Importing data from a file
	Saving scripts

	Indices and tables

